

DM 13+

Entraînement

Configurations électroniques

Établir la configuration électronique des atomes suivants dans leur état fondamental. En déduire, en expliquant, leur position dans la classification périodique 1 :

- 1/ Atome d'iode Z = 53
- 2/ Atome de dubnium Z = 105
- 3/ Atome de plutonium Z = 94
- 4/ Atome de francium Z=87
- 5/ Atome de baryum Z = 56

Établir la configuration électronique des ions suivants dans leur état fondamental et justifier brièvement leur stabilité (j'ai laissé cet exercice car ça peut être intéressant pour vous de réfléchir mais il vous manque des éléments pour traiter correctement l'exercice. Je vous invite à le laisser de côté) :

- 6/ Ion antimoine Sb^{3+} sachant que l'antimoine est un élément de numéro atomique Z=51
- 7/ Ion hafnium Hf^{4+} sachant que l'hafnium est un élément de numéro atomique Z=72
- 8/ Ion iridium ${\rm Ir}^{3+}$ sachant que l'iridium est un élément de numéro atomique Z=77
- 9/ Ion mercurique Hg^{2+} sachant que le mercure est un élément de numéro atomique Z=80
- 10/ Ion ruthénium Ru^{3+} sachant que le ruthénium est un élément de numéro atomique Z=44

Structures de Lewis

Représenter la structure de Lewis des structures suivantes :

- 11/ Trichlorure d'aluminium AlCl₃
- 12/ Difluorure de magnésium MgF₂
- 13/ Dioxyde d'azote N₂O (l'atome d'azote est l'atome central)
- 14/ Ion méthyle CH₃
- 15/ Tetraoxyde de xénon XeO_4
- 16/ Ion sulfate SO_4^{2-} (l'atome de soufre est l'atome central)
- 17/ Difluorure de magnésium MgF₂
- 18/ Trioxyde de chrome CrO₃
- 19/ Ion métavanadate VO₄³-
- 20/ Tribromure de bore BBr₃

^{1.} Sans utiliser la classification périodique bien entendu...