Programme de colles MP 2017. Semaine 2

Anneaux - Corps - Algèbres - Polynômes

Questions de cours:

- 1. Présentez vos connaissances sur les anneaux et les idéaux en illustrant par des exemples.
- **2.** Présentez vos connaissances sur l'arithmétique dans $\mathbb{K}[X]$.
- 3. Présentez vos connaissances sur les racines d'un polynôme.
- **4.** Présentez vos connaissances sur l'anneau $\mathbb{Z}/n\mathbb{Z}$.
- 5. Exo 66 banque CCP
- 6. Exo 85 banque CCP
- 7. Exo 90 banque CCP

1. Anneaux et idéaux

- Définition d'un anneau, d'un sous anneau.
- Groupe des inversibles d'un anneau.
- Définition d'un morphisme d'anneaux.
- Définition d'un idéal. Le noyau d'un morphisme d'anneaux est un idéal (*)
- Intersection d'une famille d'idéaux. Idéal engendré. Idéal monogène.
- Définition de la divisibilité en langage d'idéaux. Éléments associés.
- Les idéaux de \mathbb{Z} sont les $n\mathbb{Z}$. Les idéaux de $\mathbb{K}[X]$ sont les idéaux monogènes (\star).

2. Arithmétique dans $\mathbb{K}[X]$

- Définition d'un PGCD, d'un PPCM (dans \mathbb{Z} ou dans $\mathbb{K}[X]$) en langage des idéaux.
- Définition de polynômes premiers entre eux.
- Théorème de Bézout (*).
- Théorème de Gauss (*).
- Polynômes irréductibles sur \mathbb{K} . Tout polynôme de degré 1 est irréductible sur \mathbb{K} (\star).
- Polynômes irréductibles sur $\mathbb C$ puis sur $\mathbb R$ (sans démonstration).

3. Racines de polynômes

- Formules de Mac-Laurin et Taylor (sans démonstration).
- Racine d'un polynôme.
- Ordre de multiplicité d'une racine : définition et caractérisations (sans démonstration).

4. L'anneau $\mathbb{Z}/n\mathbb{Z}$.

- Inversibles, réguliers et générateurs de $\mathbb{Z}/n\mathbb{Z}$. (*)
- Groupe multiplicatif $((\mathbb{Z}/n\mathbb{Z})^*, \times)$
- Théorème d'Euler et petit théorème de Fermat (*).
- Théorème des restes chinois, version anneaux. Corollaire : si n et p sont premiers entre eux, $\varphi(np) = \varphi(n)\varphi(p)$ (sans démonstration).
- Calcul de $\varphi(p^r)$ avec p premier.
- Calculer de $\varphi(n)$ pour $n \in \mathbb{N}$ (*).

Exercices vus en classe:

Exercices 1-2-3-4-5-6-7-8-9-10-13 du chapitre 2 (anneaux-corps-algèbres)

Exercices 1-2-3-4-5-6-7-8-9-10-11-12-13-14 du chapitre 2bis (polynômes)