Exercice 1: Raccordement des solutions- tous les cas possibles

Déterminer les solutions sur $\mathbb R$ des équations différentielles suivantes :

- 1. $ty' 2y = t^3$;
- **2.** $t^2y' y = 0$;
- 3. (1-t)y'-y=t.

Exercice 2 : Abaissement de l'ordre

On considère l'équation différentielle notée (E):

$$(t^2 + t)x'' + (t - 1)x' - x = 0.$$

- 1. Déterminer les solutions polynômiales de (E).
- **2.** En déduire toutes les solutions de (E) sur $]1, +\infty[$.
- 3. Reprendre le même exercice avec

$$t^2x'' - 3tx' + 4x = t^3$$

dont on déterminera les solutions sur $]0,+\infty[$. On cherchera d'abord les solutions polynômiales de l'équation homogène!

Exercice 3 : Avec des séries entières

On considère l'équation différentielle

$$xy'' - y' + 4x^3y = 0 (E)$$

dont on se propose de déterminer les solutions sur \mathbb{R} .

1. Question préliminaire : soient a,b,c,d 4 réels et $f:\mathbb{R}^* \to \mathbb{R}$ définie par

$$f(x) = \begin{cases} a\cos(x^2) + b\sin(x^2) & si \ x > 0\\ c\cos(x^2) + d\sin(x^2) & si \ x < 0 \end{cases}$$

A quelle condition sur a, b, c, d la fonction f se prolonge-t-elle en une fonction de classe C^2 sur \mathbb{R} ? On recherche les solutions de (E) qui sont développables en série entière au voisinage de 0. On note $x \mapsto \sum_{n=0}^{+\infty} a_n x^n$ une telle solution, lorsqu'elle existe, et on désigne par R son rayon de convergence.

- 2. Montrer qu'il existe une relation de récurrence, que l'on explicitera, entre a_{n+4} et a_n .
- 3. Pour $p \in \mathbb{N}$, déterminer a_{4p+1} et a_{4p+3} .
- **4.** Pour $p \in \mathbb{N}$, déterminer a_{4p} en fonction de a_0 et de p (respectivement a_{4p+2} en fonction de a_2 et p).
- 5. Quel est le rayon de la série entière obtenue ? Exprimer la comme combinaison linéaire de deux fonctions "classiques".
- **6.** Soit S le \mathbb{R} -espace vectoriel des applications de \mathbb{R} dans \mathbb{R} qui sont solutions de (E) sur \mathbb{R} . Préciser une base de S.

Exercice 4: Solutions DSE puis abaissement de l'ordre

Pour les équations différentielles suivantes :

- Chercher les solutions développables en séries entières
- Résoudre complètement l'équation sur un intervalle bien choisi par la méthode d'abaissement de l'ordre
- Résoudre l'équation sur \mathbb{R} .

1.
$$xy'' + 2y' - xy = 0$$
 2. $x(x-1)y'' + 3xy' + y = 0$.

Exercice 5 : Changement de fonction inconnue - et on retrouve des coefficients constants... - Résoudre $sur \mathbb{R}$ les équations différentielles suivantes :

- 1. $(1+e^x)y'' + 2e^xy' + (2e^x + 1)y = xe^x$ en posant $z(x) = (1+e^x)y(x)$;
- 2. xy'' + 2(x+1)y' + (x+2)y = 0, en posant z = xy.

Exercice 6: Varions la constante...

Résoudre l'équation différentielle $y'' + 4y = \tan t$.

- Exercice 7 : Comportement à l'infini des systèmes 2x2

Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ une matrice complexe. Montrer que toutes les solutions du système X'(t) = AX(t) tendent vers 0 en $+\infty$ si et seulement si les valeurs propres de A sont toutes de partie réelle strictement négative.

corrigés de cette feuille : http://www.bibmath.net/ressources/justeunefeuille.php?id=12665