Exercice type chaine de Markov

Deux personnes P_1 et P_2 ont rendez-vous dans un complexe formé de cinq sites S_1 , S_2 , S_3 , S_4 et S_5 , disposés en pentagone et reliés par des routes, comme l'illustre le schéma ci-contre.

Ils arrivent au rendez-vous à l'heure prévue, mais suite

à un malentendu, P_1 se présente au site S_1 et P_2 au site S_2 .

Ils décident alors de partir à la recherche I'un de l'autre. Ils empruntent les différentes routes du complexe, avec les règles suivantes : .

- à partir d'un site, chacun choisit de se rendre sur l'un des deux sites voisins, les deux possibilités étant équiprobables ;
- les déplacements des deux personnes se font simultanément;
- tous les choix de déplacement se font indépendamment les uns des autres.

Ils continuent à se déplacer ainsi jusqu'à se retrouver éventuellement sur un même site (ils ne se rencontrent pas le long des routes). Une fois retrouvés, ils ne se déplacent plus.

A. Modélisatlon du problème

Pour tout entier naturel n, on définit les trois événements $A_n,\,B_n,\,C_n$:

- . $A_n: \ll$ les deux personnes sont sur le même site après le n-ième déplacement \gg
- $B_n:\ll$ les deux personnes sont sur des sites adjacents après le n-ième déplacement \gg
- $-C_n$: « les deux personnes sont à deux routes de distance après le n-ième déplacement»

On note a_n , b_n , c_n les probabilités des événements A_n , B_n , C_n .

- 1. Justifier que A_n , B_n , C_n forment un système complet d'événements.
- **2.** Déterminer les valeurs de a_0 , b_0 et c_0 .
- **3.** a) Montrer: $\forall n \in \mathbb{N}, P_{C_n}(A_{n+1}) = \frac{1}{4}$.
 - b) Justifier $P_{A_n}(A_{n+1}) = 1$
 - c) Déterminer toutes les probabilités conditionnelles analogues. On représentera les résultats en reproduisant et complétant le schéma ci-contre
- **4.** Etablir les relations suivantes pour tout entier $n \in \mathbb{N}$: $\begin{cases} a_{n+1} = a_n + \frac{1}{4}c_n \\ b_{n+1} = \frac{3}{4}b_n + \frac{1}{4}c_n \\ c_{n+1} = \frac{1}{4}b_n + \frac{1}{2}c_n \end{cases}$
- **5. a.** Exprimer b_{n+2} à l'aide de b_{n+1} , b_n et c_n puis exprimer c_n en fonction de b_{n+1} et b_n pour obtenir enfin une relation entre b_{n+2} , b_{n+1} et b_n
 - **b.** En déduire une expression de b_n en fonction de n. on fera intervenir les nombres $\alpha = \frac{5-\sqrt{5}}{8}$ et $\beta = \frac{5+\sqrt{5}}{8}$
 - **c.** Montrer que pour tout $n \in \mathbb{N}$: $c_n = \frac{\sqrt{5}}{5} (\beta^n \alpha^n)$.
- **6. a.** Exprimer a_n en fonction de n, α et β . (on pourra s'intéresser à la somme $a_n + b_n + c_n$).
 - **b.** Déterminer la limite de la suite $(a_n)_{n\in\mathbb{N}}$.
 - c. Quelle est la probabilité que les deux personnes ne se retrouvent jamais?

B. Nombre de déplacements avant rencontre

On définit la variable aléatoire X égale au nombre de déplacements effectués par chacune des personnes avant leur rencontre sur un même site.

1

- 1. Déterminer $X(\Omega)$, l'ensemble des valeurs prises par X.
- **2.** Soit $n \in X(\Omega)$, montrer : $P(X = n) = \frac{\sqrt{5}}{20} (\beta^{n-1} \alpha^{n-1})$
- **3.** Calculer l'espérance de X.

1. La distance maximale entre deux sites est de deux routes;

Donc A_n , B_n , C_n .sont les seuls possibles.

Comme ils sont de plus incompatibles,

Conclusion: ils forment un système complet d'événements.

2. A l'instant 0, ils sont à une route de distance donc

Conclusion: $a_0 = 0, b_0 = 1, c_0 = 0$

3. a. Si les deux sont à deux routes de distance, ils se retrouvent sur le même site à condition qu'ils se dirigent tout deux dans la direction qui les rapproche.

Chacun le fait avec une probabilté de $\frac{1}{2}$ donc $Conclusion: P_{C_n}(A_{n+1}) = \frac{1}{4}$.

b. S'ils sont tous les deux sur le même site, ils ne bougent plus, donc ils restent ensemble.

Conclusion: $P_{A_n}(A_{n+1}) = 1$

c. Pour cette même raison : $P_{A_n}(B_{n+1}) = 0$: $P_{A_n}(C_{n+1}) = 0$

 $P_{B_n}(A_{n+1}) = 0$ (quand ils sont à une route de distance, car ils se croisent ou ils s'éloignent

 $P_{B_n}(B_{n+1}) = \frac{3}{4}$ (ils se déplacent tous deux dans le même sens; horaire avec une probabiltié $\frac{1}{2}\frac{1}{2} = \frac{1}{4}$ ou antihoraire, ou ils se croisent)

 $P_{B_n}\left(C_{n+1}\right) = \frac{1}{4}$ (ils se fuient)

 $P_{C_n}(A_{n+1}) = \frac{1}{4}$ (dans le sens opposé qui les réuni)

 $P_{C_n}(B_{n+1}) = \frac{1}{4}$ (dans le sens opposé qui les rapproche)

 $P_{C_n}(C_{n+1}) = \frac{1}{2}$ (ils se déplacent tous deux dans le même sens)

4. (A_n, B_n, C_n) est un sytème complet d'événements donc

 $\mathbf{P}\left(A_{n+1}\right)=\mathbf{P}_{A_{n}}\left(A_{n+1}\right)\mathbf{P}\left(A_{n}\right)+\mathbf{P}_{B_{n}}\left(A_{n+1}\right)\mathbf{P}\left(B_{n}\right)+\mathbf{P}_{C_{n}}\left(A_{n+1}\right)\mathbf{P}\left(C_{n}\right)$

Donc $a_{n+1} = a_n + \frac{1}{2}c_n$ et de même

pour tout entier $n \in \mathbb{N}$: $\begin{cases} a_{n+1} = a_n + \frac{1}{4}c_n \\ b_{n+1} = \frac{3}{4}b_n + \frac{1}{4}c_n \\ c_{n+1} = \frac{1}{4}b_n + \frac{1}{2}c_n \end{cases}$

5. a. On a alors

$$b_{n+2} = \frac{3}{4}b_{n+1} + \frac{1}{4}c_{n+1}$$

$$= \frac{3}{4}b_{n+1} + \frac{1}{4}\left(\frac{1}{4}b_n + \frac{1}{2}c_n\right)$$

$$= \frac{3}{4}b_{n+1} + \frac{1}{16}b_n + \frac{1}{8}c_n$$

et comme $b_{n+1} = \frac{3}{4}b_n + \frac{1}{4}c_n$ on a $c_n = 4b_{n+1} - 3b_n$ et donc

$$b_{n+2} = \frac{3}{4}b_{n+1} + \frac{1}{16}b_n + \frac{1}{8}(4b_{n+1} - 3b_n)$$
$$= \frac{5}{4}b_{n+1} - \frac{5}{16}b_n$$

b. La suite $(b_n)_{n\in\mathbb{N}}$ est donc résurrente linéaire du second ordre à coefficients constants.

Son équation caractéristique est $r^2 - \frac{5}{4}r + \frac{5}{16} = 0$ de discriminant $\Delta = \frac{25}{16} - \frac{20}{16} = \frac{5}{16}$ et donc de

2

racines $\alpha = \frac{\frac{5}{4} - \frac{r5}{4}}{2} = \frac{5 - \sqrt{5}}{8}$ et $\beta = \frac{5 + \sqrt{5}}{8}$

Donc pour tout entier $n: b_n = A\alpha^n + B\beta^n$ avec A et B solutions de

$$\begin{cases} b_0 = 1 = A + B \\ b_1 = \frac{3}{4} = \frac{5 - \sqrt{5}}{8}A + \frac{5 + \sqrt{5}}{8}B \end{cases} & \text{donc} \begin{cases} B = 1 - A \\ -2\sqrt{5}}{8}A = \frac{3}{4} - \frac{5 + \sqrt{5}}{8} = \frac{1 - \sqrt{5}}{8} \end{cases} \\ \text{et} \begin{cases} B = \frac{5 + \sqrt{5}}{10} \\ A = \frac{5 - \sqrt{5}}{10} \end{cases} \\ A = \frac{5 - \sqrt{5}}{10} \begin{cases} 5 - \sqrt{5} \end{cases} & 5 + \sqrt{5} \left(5 + \sqrt{5}\right) \end{cases} & 4 < \text{with example }$$

Conclusion: $b_n = \frac{5 - \sqrt{5}}{10} \left(\frac{5 - \sqrt{5}}{8} \right)^n + \frac{5 + \sqrt{5}}{10} \left(\frac{5 + \sqrt{5}}{8} \right) = \frac{4}{5} \left(\alpha^{n+1} + \beta^{n+1} \right)$

c. Et comme $c_n = 4b_{n+1} - 3b_n$ on a alors :

$$c_n = 4\frac{4}{5} (\alpha^{n+2} + \beta^{n+2}) - 3\frac{4}{5} (\alpha^{n+1} + \beta^{n+1})$$
$$= \frac{4}{5} ((4\alpha - 3)\alpha \cdot \alpha^n + (4\beta - 3)\beta \cdot \beta^{n+1})$$

avec

$$(4\alpha - 3) \alpha = \left(4\frac{5 - \sqrt{5}}{8} - 3\right) \frac{5 - \sqrt{5}}{8}$$
$$= -\frac{1}{4}\sqrt{5}$$
$$(4\beta - 3) \beta = \left(4\frac{5 + \sqrt{5}}{8} - 3\right) \frac{5 + \sqrt{5}}{8}$$
$$= \frac{1}{4}\sqrt{5}$$

Conclusion: $c_n = \frac{\sqrt{5}}{5} (\beta^n - \alpha^n)$

6. a. Comme (A_n, B_n, C_n) est un système complet d'événements, $a_n + b_n + c_n = 1$ et

$$a_{n} = 1 - b_{n} - c_{n}$$

$$= 1 - \frac{\sqrt{5}}{5} (\beta^{n} - \alpha^{n}) - \frac{4}{5} (\alpha^{n+1} + \beta^{n+1})$$

$$= 1 - \alpha^{n} \left(-\frac{\sqrt{5}}{5} + \frac{4}{5} \alpha \right) - \beta^{n} \left(\frac{\sqrt{5}}{5} + \frac{4}{5} \beta \right)$$

$$= 1 - \alpha^{n} \left(-\frac{\sqrt{5}}{5} + \frac{5 - \sqrt{5}}{10} \right) - \beta^{n} \left(\frac{\sqrt{5}}{5} + \frac{5 + \sqrt{5}}{10} \right)$$

Conclusion: $a_n = 1 - \alpha^n \frac{5 - 3\sqrt{5}}{10} - \beta^n \frac{5 + 3\sqrt{5}}{10}$

b. Et comme $|\alpha| < 1$ et $|\beta| < 1$ (car $2 < \sqrt{5} < 3$) alors $\alpha^n \to 0$ et $\beta^n \to 0$ Conclusion : $\lim_{n \to +\infty} a_n = 1$

c. Ne se retrouver jamais est l'événement $\bigcap_{k=1}^{+\infty} \overline{A_k}$ suite décroissante d'événements donc $P\left(\bigcap_{k=1}^{+\infty} \overline{A_k}\right) = \lim_{k \to \infty} P\left(\overline{A_k}\right) = 0$

Conclusion : Les deux personnes se retrouveront presque surement.

B. Nombre de déplacements avant rencontre

On définit la variable aléatoire X égale au nombre de déplacements effectués par chacune des personnes avant leur rencontre sur un même site.

1. Elles ne peuvent se retrouver qu'à partir du second déplacement.

Conclusion :
$$X(\Omega) = [[2, +\infty[[$$

2. Pour arriver sur le même site à l'instant n, il faut être à deux de distance l'instant précédent. (quand on est à un site de distance, on ne peut pas se retrouver au tour suivant)

Donc $(X = n) = (C_{n-1} \cap A_n)$ donc

$$P(X = n) = P(C_{n-1}) P_{C_{n-1}}(A_n)$$
$$= \frac{1}{4} P(C_{n-1})$$
$$= \frac{\sqrt{5}}{20} (\beta^{n-1} - \alpha^{n-1})$$

3. La série converge absolument et

$$E(X) = \sum_{n=2}^{+\infty} \frac{\sqrt{5}}{20} n \left(\beta^{n-1} - \alpha^{n-1} \right)$$

$$= \frac{\sqrt{5}}{20} \left[\sum_{n=2}^{+\infty} n \beta^{n-1} - \sum_{n=2}^{+\infty} n \alpha^{n-1} \right]$$

$$= \frac{\sqrt{5}}{20} \left[\frac{1}{(1-\beta)^2} - 1 - \frac{1}{(1-\alpha)^2} + 1 \right]$$

$$= \frac{\sqrt{5}}{20} \left[\frac{1}{(1-\beta)^2} - \frac{1}{(1-\alpha)^2} \right]$$

$$= \frac{\sqrt{5}}{20} \left(\frac{1}{\left(1 - \frac{5 + \sqrt{5}}{8}\right)^2} - \frac{1}{\left(1 - \frac{5 - \sqrt{5}}{8}\right)^2} \right)$$

$$= \cdots = 12$$

(réduction au même dénominateur puis quantités conjuguées)

Nombres de Catalan

Pour tout le problème, a et b désignent des entiers naturels tels que a < b. Dans un plan muni d'un repère orthonormé $(O, (\overrightarrow{i}, \overrightarrow{j}))$ dont les fonctions coordonnées sont notées x et y, on fixe certaines définitions et notations.

- Un point M est sur la diagonale si et seulement si x(M) = y(M).
- Un point M est au dessous de la diagonale si et seulement si $y(M) \leq x(M)$.
- Un point M est strictement au dessous de la diagonale si et seulement si y(M) < x(M).
- On appelle *chemin* une famille de points à coordonnées entières

$$(M_0, M_1, \cdots M_p) \text{ tq } \forall k \in [0, p-1], \overrightarrow{M_k M_{k+1}} \in \{\overrightarrow{i}, \overrightarrow{j}\}$$

On dit que les M_k sont les points du chemin, que ce chemin est de longueur p et qu'il va de M_0 à M_p (extrémités du chemin).

- On désigne par $\mathcal{P}_{a,b}$ l'ensemble des chemins allant du point de coordonnées (a,a) au point de coordonnées (b,b).
- On désigne par $C_{a,b}$ l'ensemble des chemins appartenant à $P_{a,b}$ et dont tous les points sont au dessous de la diagonale.
- On désigne par $C'_{a,b}$ l'ensemble des chemins appartenant à $\mathcal{P}_{a,b}$ et dont tous les points (sauf les extrémités) sont strictement au dessous de la diagonale.
- Si $\Gamma = (M_0, M_1, \dots M_p) \in \mathcal{C}_{a,b}$, on note $m(\Gamma)$ le plus petit des $x(M_k) > 0$ tels que M_k soit sur la diagonale.
- Pour $n \in \mathbb{N}^*$, on note c_n le nombre d'éléments de $\mathcal{C}_{0,n}$. On convient que $c_0 = 1$.

La figure 1 montre le dessin obtenu en reliant les points d'un chemin $\Gamma \in \mathcal{C}_{0,5}$ par des segments. Que vaut $m(\Gamma)$ sur cet exemple?

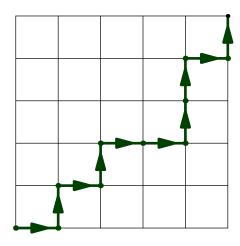


FIGURE 1 – Chemin appartenant à $C_{0,5}$

- 1. Soit $n \in \mathbb{N}^*$.
 - **a.** Quelle est la longueur d'un chemin appartenant à $\mathcal{P}_{0,n}$?
 - **b.** Calculer le nombre d'éléments de $\mathcal{P}_{0,n}$.
- **2.** a. Préciser c_1 et c_2 .
 - **b.** Exprimer le nombre d'éléments de $C_{a,b}$ à l'aide d'un c_k pour un entier k à préciser.
 - **c.** Soit $m \in \mathbb{N}^*$, exprimer le nombre d'éléments de $\mathcal{C}'_{0,m}$ à l'aide d'un c_k pour un entier k à préciser.
 - d. Montrer que

$$\forall n \in \mathbb{N}^*, \ c_n = \sum_{m=1}^n c_{m-1} c_{n-m}$$

En déduire que

$$\forall n \in \mathbb{N}, \ c_{n+1} = \sum_{k=0}^{n} c_k c_{n-k}$$

3. Les nombres c_n sont appelés les *nombres de Catalan*, ils interviennent dans diverses questions de dénombrement. On se propose de démontrer que

$$c_n = \frac{\binom{2n}{n}}{n+1}$$

a. Première solution : Dans cette question, n est un naturel quelconque, notons

$$a_n = \frac{\binom{2n}{n}}{n+1}, \quad S_n = \sum_{k=0}^n a_k a_{n-k}, \quad T_n = \sum_{k=0}^n k a_k a_{n-k}$$

en convenant que $a_0 = 1$.

- i. Montrer $2T_n = nS_n$. En déduire $T_{n+1} + S_{n+1} = \frac{n+3}{2}S_{n+1}$.
- ii. Montrer $(k+2)a_{k+1} = 2(2k+1)a_k$. En déduire $T_{n+1} + S_{n+1} = a_{n+1} + 4T_n + 2S_n$.
- iii. Montrer que $S_n = a_{n+1}$ entraine $S_{n+1} = a_{n+2}$ et conclure.

b. Seconde solution:

- i. Justifier que la série entière $\sum c_n x^n$ admet un rayon de convergence R strictement positif. On note S sa somme.
- ii. Montrer que pour tout $x \in]-R, R[, S(x) = 1 + x (S(x))^2.$
- iii. En déduire que $S(x) = \frac{1 \sqrt{1 4x}}{2x}$ puis que $c_n = \frac{\binom{2n}{n}}{n+1}$.

Corrigé

Avec les définitions, le $m(\Gamma)$ pour l'exemple de la figure vaut 1.

- 1. a. Quand sur un chemin, on passe d'un point au point suivant, une seule des deux coordonnées augmente de 1. Pour aller de (0,0) à (n,n), les deux coordonnées doivent augmenter de n. La longueur d'un chemin dans $\mathcal{P}_{0,n}$ est donc 2n.
 - b. Montrons que

$$\operatorname{Card}(\mathcal{P}_{0,n}) = \binom{2n}{n}$$

en formant une bijection avec l'ensemble des parties de [1, 2n].

Définissons une application de $\mathcal{P}(\llbracket 1,2n \rrbracket)$ dans $\mathcal{P}_{0,n}$ en associant à une partie Ω de $\llbracket 1,2n \rrbracket$ un chemin $\Gamma_{\Omega} = (M_0,M_1,\cdots,M_{2n})$. on pose $M_0 = (0,0)$ et

$$\forall k \in [1, 2n], \ M_k = \begin{cases} M_{k-1} + (1, 0) & \text{si } k \in \Omega \\ M_{k-1} + (0, 1) & \text{si } k \notin \Omega \end{cases}$$

Pour tout chemein Γ , il existe une unique partie Ω telle que $\Gamma = \Gamma_{\Omega}$. Elle est formée avec les indices des points qui sont les extrémités droites des segments horizontaux du chemin.

2. a. L'ensemble $C_{0,1}$ contient un seul chemin ((0,0),(1,0),(1,1)) donc $c_1=1$. L'ensemble $C_{0,2}$ contient deux chemins seulement :

$$((0,0),(1,0),(1,1),(2,1),(2,2))$$
 et $((0,0),(1,0),(2,0),(2,1),(2,2))$

donc $c_2 = 2$.

b. La translation de vecteur (-a, -a) définit une bijection de $\mathcal{P}_{a,b}$ vers $\mathcal{P}_{0,b-a}$. On en déduit

$$Card(\mathcal{C}_{a,b}) = c_{b-a}$$

c. Si $(M_0, M_1, \dots, M_{2m})$ est un chemin au dessous de la diagonale, on a forcément $M_1 = (1,0)$ et $M_{2m-1} = (m, m-1)$. Lorsque les M_1, \dots, M_{2m-1} sont tous strictement au dessous de la diagonale, on peut les translater de 1 vers la gauche en restant au dessous de la diagonale. Posons

$$\forall i \in [0, 2m - 2], P_i = M_{i+1} - (1, 0)$$

On obtient une bijection de $\mathcal{C}'_{0,m}$ vers $\mathcal{C}_{0,m-1}$. On en déduit

$$\operatorname{Card}(\mathcal{C}'_{0,m}) = c_{m-1}$$

d. Par définition, m prend ses valeurs entre 1 et n pour des chemins $C_{0,n}$. Classons donc ces chemins suivant la valeur prise par la fonction m. On forme une partition

$$C_{0,n} = A_1 \cup A_2 \cup \cdots \cup A_n$$

où \mathcal{A}_k est l'ensemble des chemins $\Gamma \in \mathcal{C}_{0,n}$ tels que $m(\Gamma) = k$.

Si $\Gamma = (M_0, \dots, M_{2n})$ est un tel chemin, on a $M_{2k} = (k, k)$ et, à cause de la minimalité dans la définition de m,

$$(M_0, \cdots, M_{2k}) \in \mathcal{C}'_{0,k}, \qquad (M_2k, \cdots, M_{2n}) \in \mathcal{C}_{k,m}$$

L'application

$$\begin{cases} \mathcal{A}_k \to \mathcal{C}'_{0,k} \times \mathcal{C}_{k,n} \\ (M_0, \cdots, M_{2n}) \mapsto ((M_0, \cdots, M_{2k}), (M_{2k}, \cdots, M_{2n})) \end{cases}$$

est une bijection. On en déduit que $\operatorname{Card}(\mathcal{A}_k) = c_{k-1}c_{n-k}$ d'après les questions b. et c. La partition de $\mathcal{C}_{0,n}$ conduit alors au résultat demandé. En remplaçant n par n+1 et en utilisant k-1 comme nouvel indice, on obtient

$$c_{n+1} = \sum_{k=0}^{n} c_k c_{n-k}$$

3. a. Posons i = n - k dans la somme définissant T_n .

$$T_n = \sum_{i=0}^{n} (n-i)a_{n-i}a_i = n\sum_{i=0}^{n} a_{n-i}a_i - \sum_{i=0}^{n} ia_{n-i}a_i = nS_n - T_n$$

On en déduit $2T_n = nS_n$ puis

$$T_{n+1} + S_{n+1} = \left(\frac{n+1}{2} + 1\right) S_{n+1} = \frac{n+3}{2} S_{n+1}$$

b. D'après les définitions de l'énoncé et les propriétés des coefficients du binome,

$$a_k = \frac{(2k)!}{k!(k+1)!}, \quad a_{k+1} = \frac{(2k+2)!}{(k+1)!(k+2)!}, \quad (k+1)a_{k+1} = \frac{(2k+2)!}{(k+1)!(k+1)!}$$

D'autre part,

$$2(2k+1)a_k = \frac{2(2k+1)!}{k!(k+1)!} = \frac{2(k+1)(2k+1)!}{(k+1)k!(k+1)!} = \frac{(2k+2)!}{(k+1)!(k+1)!}$$

ce qui démontre l'égalité demandée. On en tire

$$T_{n+1} + S_{n+1} = a_{n+1} + \sum_{k=1}^{n+1} (k+1)a_k a_{n+1-k}$$

$$= a_{n+1} + \sum_{k=0}^{n} (k+2)a_{k+1}a_{n-k} \text{ (avec un changement d'indice } k' = k-1)$$

$$= a_{n+1} + \sum_{k=0}^{n} 2(2k+1)a_k a_{n-k} \text{ (avec la dernière relation)}$$

$$= a_{n+1} + 4T_n + 2S_n \text{ (par définition de } T_n \text{ et } S_n)$$

c. On suppose $S_n = a_{n+1}$. D'après a. et b.

$$a_{n+1} + 4T_n + 2S_n = \frac{n+3}{2}S_{n+1}$$

Exprimons T_n en fonction de S_{n+1} puis de a_{n+2} .

$$a_{n+1} + 2(n+1)S_n = \frac{n+3}{2}S_{n+1} \Rightarrow (2n+3)a_{n+1} = \frac{n+3}{2}S_{n+1}$$
$$\Rightarrow S_{n+1} = \frac{2(2n+3)}{n+3}a_{n+1} = a_{n+2}$$

d'après la relation du b. prise avec k = n + 1. On en déduit par récurrence que les suites $(a_n)_{n \in \mathbb{N}}$ et $(a_n)_{n \in \mathbb{N}}$ vérifient les mêmes conditions initiales et la même relation de récurrence. Elles sont donc égales.