PROBLÈME 1

Objectifs

Dans la **partie I**, on considère deux exemples de fonctions indéfiniment dérivables sur \mathbf{R} et on s'interroge sur l'existence d'un développement en série entière dans un voisinage de 0 pour ces fonctions. Dans la **partie II**, indépendante de la **partie I**, on démontre le théorème de Borel en construisant, pour toute suite réelle $(b_p)_{p\in \mathbf{N}}$, une fonction f indéfiniment dérivable sur \mathbf{R} telle que pour tout $p\in \mathbf{N}$, $f^{(p)}(0)=b_p$.

Partie I - Deux exemples de fonctions indéfiniment dérivables

On considère la fonction f définie sur \mathbf{R} par :

$$\forall x \in \mathbf{R}, f(x) = \int_0^{+\infty} e^{-t(1-itx)} dt.$$

Q1. Montrer que la fonction f est bien définie sur \mathbf{R} .

Pour tout $p \in \mathbb{N}$, on note $\Gamma_p = \int_0^{+\infty} t^p e^{-t} dt$.

- **Q2.** Pour tout $p \in \mathbb{N}$, justifier l'existence de Γ_p et déterminer une relation entre Γ_{p+1} et Γ_p .
- **Q3.** En déduire, pour tout $p \in \mathbb{N}$, la valeur de Γ_p .
- **Q4.** Montrer que f est indéfiniment dérivable sur \mathbf{R} et déterminer, pour tout $x \in \mathbf{R}$ et tout $p \in \mathbf{N}$, $f^{(p)}(x)$.
- **Q5.** En déduire le rayon de convergence de la série entière $\sum_{p\geq 0} \frac{f^{(p)}(0)}{p!} x^p$.

La fonction f est-elle développable en série entière au voisinage de 0?

On considère la fonction g définie sur \mathbf{R} par :

$$\forall x \in \mathbf{R}, g(x) = \sum_{k=0}^{+\infty} e^{-k(1-ikx)}.$$

- **Q6.** Montrer que g est indéfiniment dérivable sur \mathbf{R} et déterminer, pour tout $x \in \mathbf{R}$ et tout $p \in \mathbf{N}$, $g^{(p)}(x)$.
- **Q7.** Montrer que pour tout $p \in \mathbb{N}$, $|g^{(p)}(0)| \ge p^{2p}e^{-p}$.
- **Q8.** En déduire le rayon de convergence de la série entière $\sum_{p\geq 0} \frac{g^{(p)}(0)}{p!} x^p$.

La fonction g est-elle développable en série entière au voisinage de 0?

Partie II - Le théorème de Borel

Q9. Déterminer deux nombres complexes a et b tels que pour tout $x \in \mathbf{R}$:

$$\frac{1}{1+x^2} = \frac{a}{x-i} + \frac{b}{x+i}.$$

Q10. On considère la fonction ψ définie sur **R** par : $\forall x \in \mathbf{R}, \psi(x) = \frac{1}{x-i}$. Montrer par récurrence que pour tout $p \in \mathbf{N}$ et tout $x \in \mathbf{R}$:

$$\psi^{(p)}(x) = \frac{(-1)^p p!}{(x-i)^{p+1}}.$$

Q11. Déterminer, pour tout $p \in \mathbb{N}$, la dérivée p-ième de la fonction φ_1 définie sur \mathbb{R} par :

$$\forall x \in \mathbf{R}, \varphi_1(x) = \frac{1}{1+x^2}.$$

Q12. Montrer que pour tout $p \in \mathbb{N}$ et tout $x \in \mathbb{R}$, $\left| (x+i)^{p+1} - (x-i)^{p+1} \right| \le 2(1+x^2)^{\frac{p+1}{2}}$. En déduire que pour tout $p \in \mathbb{N}$ et tout $x \in \mathbb{R}^*$, on a :

$$\left|\varphi_1^{(p)}(x)\right| \le \frac{p!}{|x|^{p+1}}.$$

Q13. Pour tout réel α , notons φ_{α} la fonction définie sur **R** par :

$$\forall x \in \mathbf{R}, \varphi_{\alpha}(x) = \frac{1}{1 + \alpha^2 x^2}.$$

Montrer que pour tout $p \in \mathbb{N}$ et tout $x \in \mathbb{R}^*$:

$$|\alpha| \cdot \left| \varphi_{\alpha}^{(p)}(x) \right| \le \frac{p!}{|x|^{p+1}}.$$

On considère une suite réelle $(a_n)_{n\in\mathbb{N}}$ et on lui associe la suite de fonctions $(u_n)_{n\in\mathbb{N}}$ définie sur **R** par :

$$\forall x \in \mathbf{R}, u_n(x) = \frac{a_n x^n}{1 + n! a_n^2 x^2}.$$

Q14. Pour tout $n \in \mathbb{N}$, on note $\alpha_n = \sqrt{n!}a_n$. Montrer que pour tout entier $p \ge 0$, tout entier $n \ge p$ et tout réel x, on a :

$$u_n^{(p)}(x) = a_n \sum_{k=0}^{p} \binom{p}{k} \frac{n!}{(n-k)!} x^{n-k} \varphi_{\alpha_n}^{(p-k)}(x).$$

- **Q15.** En déduire que pour tout entier $n \ge 0$ et tout entier $p \in [0, n-1]$, $u_n^{(p)}(0) = 0$ et déterminer $u_n^{(n)}(0)$.
- **Q16.** Montrer que pour tout entier $n \in \mathbb{N}^*$, tout entier $p \in [0, n-1]$ et tout réel x, on a :

$$\left| u_n^{(p)}(x) \right| \le \frac{|x|^{n-p-1}}{\sqrt{n!}} p! 2^n.$$

- **Q17.** En déduire que la fonction $U = \sum_{n=0}^{+\infty} u_n$ est bien définie et indéfiniment dérivable sur **R**.
- **Q18.** Montrer que $U(0) = a_0$ et pour tout entier $p \ge 1$, $U^{(p)}(0) = \sum_{n=0}^{p-1} u_n^{(p)}(0) + p!a_p$.
- Q19. Déduire de ce qui précède que pour toute suite réelle $(b_p)_{p\in\mathbb{N}}$, il existe une fonction f indéfiniment dérivable sur \mathbf{R} telle que pour tout $p\in\mathbb{N}$, $f^{(p)}(0)=b_p$. Ce résultat est appelé théorème de Borel. Il a été démontré par Peano et Borel à la fin du xix^e siècle.