EXERCICE I

Polynômes de Laguerre et méthode de quadrature de Gauss

Partie I - Produit scalaire dans $\mathbb{R}_n[X]$

I.1 - Généralités

Q1. Soit $(P,Q) \in (\mathbb{R}_n[X])^2$ et f la fonction $t \mapsto P(t)Q(t) \exp(-t)$. Par produit, f est continue sur $[0; +\infty[$.

PQ est un polynôme que l'on peut écrire sous la forme $\sum_{k=0}^{\infty} a_k X^k$.

On a alors, pour tout $t \in \mathbb{R}^+$, $t^2 f(t) = \sum_{k=0}^a a_k t^{2+k} e^{-t}$.

Pour tout k, $\lim_{t \to +\infty} t^{2+k} e^{-t} = 0$ donc, par somme, $\lim_{t \to +\infty} t^2 f(t) = 0$ et $f(t) = o(1/t^2)$. 2 > 1 donc $t\mapsto \frac{1}{t^2}$ est intégrable sur $[1;+\infty[.\ f\ l$ 'est donc aussi.

On en conclut que f est intégrable sur $[0; +\infty[$ et donc l'intégrale définissant (P|Q) est convergente.

Q2. Soit $\varphi:(P,Q)\mapsto(P|Q)$.

- La question précédente prouve que φ est définie sur $(\mathbb{R}_n[X])^2$ à valeurs dans \mathbb{R} .
- Pour $(P_1, P_2, Q) \in (\mathbb{R}_n[X])^3$, $\lambda \in \mathbb{R}$, par linéarité d'intégrales généralisées convergentes, $\varphi(P_1 + \lambda P_2, Q) = \varphi(P_1, Q) + \lambda \varphi(P_2, Q) : \varphi$ est linéaire à gauche.
- Par commutativité du produit dans \mathbb{R} , pour tout $(P,Q) \in (\mathbb{R}_n[X])^2$, $\varphi(P,Q) = \varphi(Q,P) : \varphi$ est symétrique; étant linéaire à gauche, elle est bilinéaire et symétrique.

— Soit $P \in \mathbb{R}_n[X]$. $\varphi(P,P) = \int_0^{+\infty} P(t)^2 e^{-t} dt$. Pour tout $t \in [0; +\infty[$, $P(t)^2 e^{-t} \ge 0$ donc, par positivité de l'intégrale, $\varphi(P,P) \ge 0$: φ est positive.

On suppose $\varphi(P, P) = 0$; alors $\int_{0}^{+\infty} P(t)^{2} e^{-t} dt = 0$.

Comme $t \mapsto P(t)^2 e^{-t}$ est continue et positive, d'après le théorème de nullité de l'intégrale, pour tout $t \in \mathbb{R}^+$, $P(t)^2 e^{-t} = 0$ et P(t) = 0. Le polynôme P a une infinité de racines, donc est nul. Par conséquent φ est définie.

Conclusion : φ est un produit scalaire sur $\mathbb{R}_n[X)$.

I.2 - Calcul d'un produit scalaire

Q3. On pose, pour $t \in \mathbb{R}^+$, $u(t) = t^k$, $v(t) = -e^{-t}$. u et v sont de classe \mathcal{C}^1 sur \mathbb{R}^+ , pour $t \geq 0$, $u'(t) = kt^{k-1}$, $v'(t) = e^{-t}$. De plus, par croissance comparée, $\lim_{t \to +\infty} u(t)v(t) = 0$ donc, par intégration

par parties, $\int_0^{+\infty} u(t)v'(t)dt = [u(t)v(t)]_0^{+\infty} - \int_0^{+\infty} u'(t)v(t)dt$ c'est-à-dire,

$$\int_{0}^{+\infty} t^{k} e^{-t} dt = k \int_{0}^{+\infty} t^{k-1} e^{-t} dt$$

Q4. Pour $k \in \mathbb{N}$, $(X^k|1) = \int_0^{+\infty} t^k e^{-t} dt$. Pour $k \in \mathbb{N}$, on pose $\mathcal{P}(k)$: " $(X^k|1) = k$!". Pour k = 0, $(X^k|1) = \int_0^{+\infty} e^{-t} dt = [-e^{-t}]_0^{+\infty} = 1 = 0$!: $\mathcal{P}(0)$ est vraie.

Soit $k \in \mathbb{N}$. On suppose $\mathcal{P}(k)$ vraie.

D'après la question précédente, $(X^{k+1}|1) = (k+1)(X^k|1)$ donc, d'après l'hypothèse de récurrence,

1

 $(X^{k+1}|1) = (k+1)k! = (k+1)! : \mathcal{P}(k+1)$ est vraie.

On peut alors conclure par récurrence que, pour tout $k \in \mathbb{N}$, $\mathcal{P}(k)$ est vraie, c'est-à-dire, $(X^k|1) = k!$.

Partie II - Construction d'une base orthogonale

Propriétés de l'application α

Q5. Si $P \in \mathbb{R}_n[X]$, deg $P \leq n$ donc deg $P' \leq n-1$, deg $P'' \leq n-2$; ainsi $\alpha(P)$ est un polynôme de degré inférieur ou égal à n.

De plus, par linéarité de la dérivation, α est linéaire donc α est un endomorphisme de $\mathbb{R}_n[X]$.

Q6. $\alpha(1)=0, \alpha(X)=1-X$ et, pour $k\geq 2, \alpha(X^k)=k(k-1)X^{k-1}+kX^{k-1}-kX^k=-kX^k+k^2X^{k-1}$. La matrice de α dans la base $(1,X,\cdots,X^n)$ est donc

$$\begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & -1 & 4 & \ddots & \vdots \\ \vdots & \ddots & -2 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & n^2 \\ 0 & \cdots & \cdots & 0 & -n \end{pmatrix}$$

Q7. Cette matrice est triangulaire supérieure donc ses valeurs propres sont ses coefficients diagonaux à savoir $0, -1, -2, \cdots, -n$. α possède donc n+1 valeurs propres distinctes et $\mathbb{R}_n[X]$ est de dimension n+1 donc α est diagonalisable.

Finalement, α est diagonalisable et $Sp(\alpha) = \{-k; k \in [0; n]\}$.

- **Q8.** D'après la question précédente, le polynôme caractéristique de α est scindé à racines simples donc les sous espaces propres de α sont de dimension 1 : dim $\ker(\alpha + kid_{\mathbb{R}_n[X]}) = 1$.
- **Q9.** Soit Q_k un vecteur (non nul) engendrant $\ker(\alpha + kid_{\mathbb{R}_n[X]})$ et c_k son coefficient dominant.

 c_k est non nul et $P_k = \frac{1}{c_k}Q_k$ est un polynôme de $\mathbb{R}_n[X]$, de coefficient dominant égal à 1 vérifiant $\alpha(P_k) = -kP_k$.

Si R_k est un polynôme vérifiant ces propriétés, en particulier, $R_k \in \ker(\alpha + kid_{\mathbb{R}_n[X]})$ donc il existe $a \in \mathbb{R}$ tel que $R_k = aQ_k$. Le coefficient dominant de R_k est 1 donc $a = \frac{1}{c_k}$ et $R_k = P_k$.

Par conséquent, il existe un unique polynôme $P_k \in \mathbb{R}_n[X]$, de coefficient dominant égal à 1 et vérifiant $\alpha(P_k) = -kP_k$.

Q10. Soit d le degré de P_k

Si k est non nul, on peut identifier les coefficients de degré k pour obtenir -d=-k donc d=k. Pour k=0: $\alpha(1)=0$ et 1 est un polynôme de coefficient dominant 1 tel que $\alpha(1)=-0\times 1$ donc, par unicité, $P_0=1$, de degré 0.

Q11. On vient de voir que $P_0 = 1$.

Soit P = X + a un polynôme de degré 1 et de coefficient dominant 1.

 $\alpha(P) = 1 - X \text{ donc } \alpha(P) = -P \text{ si et seulement si } a = -1. \text{ Ainsi } P_1 = X - 1.$

De même, on pose $P = X^2 + bX + c$. P' = 2X + b, P'' = 2 et $\alpha(P) = 2X + (1 - X)(2X + b) = -2X^2 + (4 - b)X + b$ donc $\alpha(P) = -2P$ si et seulement si 4 - b = -2b et b = -2c d'où b = -4 et c = 2.

Par conséquent, $P_2 = X^2 - 4X + 2$.

II.3 - Orthogonalité de la famille (P_0, \dots, P_n)

Q12. Par définition, $(\alpha(P)|Q) = \int_0^{+\infty} (tP''(t) + (1-t)P'(t))Q(t)e^{-t}dt$. on pose $u(t) = tP'(t)e^{-t}$. u et Q sont de classe C^1 sur \mathbb{R}^+ , $u'(t) = e^{-t}(tP''(t) + P'(t) - tP'(t))$; par

croissance comparée, $\lim_{t\to +\infty} u(t)Q(t)=0$ donc, par intégration par parties,

$$(\alpha(P)|Q) = -\int_0^{+\infty} tP'(t)Q'(t)e^{-t}dt.$$

- Q13. En procédant de même mais en partant de $(P|\alpha(Q))$ et en échangeant les rôles de P et Q, on obtient $(\alpha(P)|Q) = (P|\alpha(Q)).$
- **Q14.** Soit k et l deux entiers distincts de $\mathbb{R}_n[X]$.

D'après Q13, $(\alpha(P_k)|P_l)=(P_k|\alpha(P_l))$ et, d'après Q9, $-k(P_k|P_l)=-l(P_k|P_l)$; or $k\neq l$ donc $(P_k|P_l)=0$

Conclusion: (P_0, \dots, P_n) est une famille orthogonale de $\mathbb{R}_n[X]$; elle ne comporte pas le vecteur nul donc elle est libre et elle contient n+1 vecteurs donc c'est une base de $\mathbb{R}_n[X]$.

Partie III - Méthode de quadrature de Gauss

Q15. Soit $(\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$.

Sur $\mathbb{R}_{n-1}[X]$, on considère les applications $\varphi: P \mapsto \int_0^{+\infty} P(t)e^{-t}dt$ et $\psi: P \mapsto \sum_{i=1}^n \lambda_i P(x_i)$.

 φ et ψ sont des applications linéaires sur $\mathbb{R}_{n-1}[X]$ donc elles sont égales si et seulement si elles coincident sur tous les vecteurs de la base $(1, X, \dots, X^{n-1})$.

Pour
$$i \le n - 1$$
, $\varphi(X^i) = \int_0^{+\infty} t^i e^{-t} dt = i!$ et $\psi(X^i) = \sum_{j=1}^n \lambda_j x_j^i$.

Pour tout $i \in [0; n-1]$, $\varphi(X^i) = \psi(X^i)$ équivaut donc au système :

$$\begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ \vdots & \vdots & & \vdots \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix} = \begin{pmatrix} 0! \\ 1! \\ \vdots \\ (n-1)! \end{pmatrix}$$

Q16. La matrice $V = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ \vdots & \vdots & & \vdots \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \end{pmatrix}$ est la matrice de Vandermonde associée aux réels

 x_1, x_2, \cdots, x_n qui sont deux à deux distincts donc le déterminant de V est non nul. V est donc inversible et le système précédent admet une unique solution : il existe un unique n-uplet $(\lambda_1, \dots, \lambda_n) \in$ \mathbb{R}^n vérifiant la relation (*) pour tout $P \in \mathbb{R}_{n-1}[X]$.

Q17. Soit $P = \prod_{i=1}^{n} (X - x_i)^2$.

 $P \in \mathbb{R}_{2n}[X]$ et, pour tout $i, P(x_i) = 0$ donc $\psi(P) = 0$.

Par contre, $t \mapsto P(t)e^{-t}$ est continue positive et non identiquement nulle sur $[0; +\infty[$ donc $\varphi(P) > 0$. Par conséquent,

$$\int_0^{+\infty} P(t)e^{-t}dt \neq \sum_{i=1}^n \lambda_i P(x_i)$$

3