Exercice

- **1.** Puisque $\binom{n}{k}$ est le nombre de parties à k éléments dans un ensemble à n éléments, la somme $\sum_{k=0}^{n} \binom{n}{k}$ est égale au nombre total de parties d'un ensemble à n éléments, c'est-à-dire 2^n .
 - Par la formule du binôme, $\sum_{k=0}^{n} \binom{n}{k} = \sum_{k=0}^{n} \binom{n}{k} 1^{k} 1^{n-k} = (1+1)^{n} = 2^{n}$.
- 2. Les événements $A_{i,j} = [X = i] \cap [Y = j]$, pour $(i,j) \in [1; n+1]^2$, forment un système complet d'événements, donc $\sum_{(i,j) \in [1; n+1]^2} \mathbb{P}(A_{i,j}) = 1$.

Or par
$$\mathbf{1}$$
, $\sum_{(i,j)\in [\![1;n+1]\!]^2} \mathbb{P}(A_{i,j}) = \sum_{i=1}^{n+1} \sum_{j=1}^{n+1} \alpha\binom{n}{i-1}\binom{n}{j-1} = \alpha \sum_{i=1}^{n+1} \binom{n}{i-1} \sum_{j=1}^{n+1} \binom{n}{j-1} = \alpha 4^n$. Donc $\alpha = \frac{1}{4^n}$.

3. • Par formule des probabilités totales sur le système complet d'événements $([Y=j])_{j\in \llbracket 1;n+1\rrbracket}$, on a :

$$\forall i \in [1; n+1], \ \mathbb{P}(X=i) = \sum_{j=1}^{n+1} \mathbb{P}([X=i] \cap [Y=j]) = \frac{\binom{n}{i-1}}{4^n} \sum_{j=1}^{n+1} \binom{n}{j-1} = \frac{\binom{n}{i-1}}{2^n}.$$

- Par symétrie, $\forall\, j \in [\![1;n+1]\!],\, \mathbb{P}(Y=j) = \frac{\binom{n}{j-1}}{2^n}.$
- Ainsi $\forall (i,j) \in [1; n+1]^2$, $\mathbb{P}([X=i] \cap [Y=j]) \frac{\binom{n}{(i-1)}\binom{n}{j-1}}{4^n} = \mathbb{P}(X=i)\mathbb{P}Y=j)$. Les variables X et Y sont donc indépendantes.
- 4. La variable Z = X 1 est à valeurs dans [0; n] et $\forall k \in [0; n]$, $P(Z = k) = P(X = k + 1) = \binom{n}{k} \frac{1}{2^k}$. Donc Z suit la loi binomiale de paramètres n et $p = \frac{1}{2}$. En particulier, $\mathbb{E}(Z) = \frac{n}{2}$ et $\mathbb{V}(Z) = \frac{n}{4}$. On en déduit par linéarité de l'espérance que $\mathbb{E}(X) = \mathbb{E}(Z) + 1 = \frac{n}{2} + 1$, et par la formule donnant la variance d'une transformation affine que $\mathbb{V}(X) = \mathbb{V}(Z) = \frac{n}{4}$.
- **5.** Par définition des coefficients binomiaux, les parties de A de cardinal r sont au nombre de $\binom{p+q}{r}$.
 - Partitionnons A en deux parties A_1 et A_2 de cardinal p et q respectivement. Pour tout $k \in [0; r]$, le nombre de parties de A de cardinal r et comportant exactement k éléments de A_1 (et donc r - k éléments de A_2) est égal à $\binom{p}{k}\binom{q}{r-k}$, puisqu'il y a autant de telles parties que de couples constitués d'une partie de A_1 de cardinal k et d'une partie de A_2 de cardinal r - k.

Ainsi, la somme $\sum_{k=0}^{r} {p \choose k} {q \choose r-k}$ est égale au nombre total de parties de A de cardinal r.

L'égalité demandée résulte de la comparaison des résultats des deux points précédents.

- **6.** Le cas p = q = r = n dans l'égalité de **5** donne $\sum_{k=0}^{n} \binom{n}{k} \binom{n}{n-k} = \sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}$, puisque $\binom{n}{k} = \binom{n}{n-k}$.
- **7.1.** Les colonnes de la matrice B sont toutes non nulles et proportionnelles à la colonne des coefficients binomiaux $\binom{n}{i-1}$ pour $1 \le i \le n+1$, donc $\operatorname{rg}(B) = 1$.
- **7.1.** On a Tr(B) = $\sum_{i=1}^{n+1} \mathbb{P}([X=i] \cap [Y=i]) = \frac{1}{4^n} \sum_{i=1}^{n+1} {n \choose i-1}^2 = \frac{{2n \choose n}}{4^n}$ par **6**.

Problème

Partie 1 : résultats préliminaires

10. Une intégration par partie (on dérive f et on primitive $\cos(nt)$ et on a bien deux fonctions de classe C^1 sur le segment)

$$\int_0^{2\pi} f(t)\cos(nt) \ dt = \left[\frac{\sin(nt)}{n}f(t)\right]_0^{2\pi} - \frac{1}{n}\int_0^{2\pi} \sin(nt)f'(t) \ dt$$

Le terme entre crochets est nuls. On majore l'autre grossièrement :

$$\left| \int_{0}^{2\pi} f(t) \cos(nt) \, dt \right| \le \frac{1}{n} \int_{0}^{2\pi} |f'(t)| \, dt$$

Le majorant étant de limite nulle,

$$\lim_{n \to +\infty} \int_0^{2\pi} f(t) \cos(nt) dt = 0$$

11. Par théorème fondamental appliqué à la fonction continue φ sur l'intervalle $\mathbb R$, la primitive cherchée est

$$\Phi : x \mapsto \int_0^x \varphi(t) \ dt$$

 φ étant 2π -périodique, $\int_x^{x+2\pi} \varphi(t) \ dt$ ne dépend pas de x et par hypothèse, sa valeur en 0 est nulle. On en déduit que Φ est aussi 2π -périodique.

Comme Φ est continue, elle est bornée sur le segment $[0, 2\pi]$. Etant 2π -périodique, elle est aussi bornée sur \mathbb{R} (avec la même borne que sur $[0, 2\pi]$).

On peut alors utiliser une intégration par partie comme plus haut.

$$\int_{a}^{b} f(t)\varphi(nt) dt = \left[\frac{1}{n}f(t)\Phi(nt)\right]_{a}^{b} - \frac{1}{n}\int_{a}^{b} f'(t)\Phi(nt) dt$$

En notant $M = \|\Phi\|_{\infty}$ (qui existe) on a alors

$$\left| \int_a^b f(t)\varphi(nt) \ dt \right| \le \frac{M}{n} (|f(a)| + |f(b)|) + \frac{M}{n} \int_a^b |f'(t)| \ dt$$

Là encore le majorant est de limite nulle et

$$\lim_{n \to +\infty} \int_{a}^{b} f(t)\varphi(nt) \ dt = 0$$

12. On a

$$\int_{\alpha}^{\beta} h(t)\varphi(nt) dt = \int_{\alpha}^{\beta} (h(t) - g(t))\varphi(nt) dt + \int_{\alpha}^{\beta} g(t)\varphi(nt) dt$$

On peut alors utiliser l'inégalité triangulaire et la croissance de l'intégrale

$$\left| \int_{\alpha}^{\beta} h(t) \varphi(nt) \ dt \right| \leq \int_{\alpha}^{\beta} |h(t) - g(t)| |\varphi(nt)| \ dt + \left| \int_{\alpha}^{\beta} g(t) \varphi(nt) \ dt \right|$$

Comme |h-g| est majorée par ε sur $[\alpha, \beta]$, on en déduit alors que

$$\left| \int_{\alpha}^{\beta} h(t) \varphi(nt) \ dt \right| \leq \|\Phi\|_{\infty} |\beta - \alpha| \varepsilon + \left| \int_{\alpha}^{\beta} g(t) \varphi(nt) \ dt \right|$$

Soit alors f continue sur [a,b]. On va montrer le résultat demandé en revenant à la définition des limites (comme nous y incite le début de la question). On se donne donc $\varepsilon > 0$. Par théorème de Weierstrass, on peut trouver une fonction polynomiale P telle que $||f - P||_{\infty,[a,b]} \leq \varepsilon$. La question précédente donne une constante M telle que

$$\left| \int_{a}^{b} f(t)\varphi(nt) \ dt \right| \leq M|b - a|\varepsilon + \left| \int_{a}^{b} P(t)\varphi(nt) \ dt \right|$$

La question 11 montre que pour n assez grand, le second terme est en module plus petit que ε pour n assez grand. C'est à dire qu'il existe n_0 tel que

$$\forall n \ge n_0, \ \left| \int_a^b f(t)\varphi(nt) \ dt \right| \le (M|b-a|+1)\varepsilon$$

Comme (M|b-a|+1) est une constante, on a donc prouvé que

$$\lim_{n \to +\infty} \int_{a}^{b} f(t)\varphi(nt) \ dt = 0$$

Dans le cas où f n'est que continue par morceaux, il existe un nombre fini de morceaux $]\alpha, \beta[$ tels que f restreinte à $]\alpha, \beta[$ soit continue et prolongeable en une fonction \tilde{f} continue sur $[\alpha, \beta]$. On a

$$\lim_{n \to +\infty} \int_{\alpha}^{\beta} \tilde{f}(t) \varphi(nt) \ dt = 0$$

Remplacer \tilde{f} par f ne change pas l'intégrale. On obtient le résultat pour f sur [a,b] en faisant la somme sur tous les morceaux.

13. On a $\sin^2(nt) = \frac{1}{2}(1 - \cos(2nt))$ et donc

$$\int_{a}^{b} f(t)\sin^{2}(nt) dt = \frac{1}{2} \int_{a}^{b} f(t) dt - \frac{1}{2} \int_{a}^{b} f(t)\cos(2nt) dt$$

Comme $x \mapsto \cos(2x)$ est continue, 2π -périodique et d'intégrale nulle sur $[0, 2\pi]$, le second terme est de limite nulle avec ce qui précède et ainsi

$$\lim_{n \to +\infty} \int_a^b f(t) \sin^2(nt) dt = \frac{1}{2} \int_a^b f(t) dt$$

Partie 2 : l'intégrale de Dirichlet

14. $t\mapsto \frac{F(t)}{t}$ étant continue sur $[a,+\infty[$, le seul problème est celui au voisinage de $+\infty$. Comme F est bornée, on a $\frac{F(t)}{t^2}=O\left(\frac{1}{t^2}\right)$ et par comparaison aux fonctions de Riemann, $t\mapsto \frac{F(t)}{t}$ est intégrable au voisinage de $+\infty$ et finalement sur $[a,+\infty[$. A fortiori, on a existence de

$$\int_{a}^{+\infty} \frac{F(t)}{t^2} dt$$

 $t\mapsto \frac{f(t)}{t}$ est continue sur $[a,+\infty[$ et le seul problème est donc celui au voisinage de $+\infty$. On revient ici à la définition de l'existence de l'intégrale (et on ne cherche pas à prouver l'intégrabilité). Par intégration par parties (et comme F est une primitive de f sur \mathbb{R}^+ par théorème fondamental)

$$\int_{a}^{b} \frac{f(t)}{t} dt = \left[\frac{F(t)}{t} \right]_{a}^{b} + \int_{a}^{b} \frac{F(t)}{t^{2}} dt$$

Comme F est bornée, le terme entre crochets admet une limite (nulle) quand $b \to +\infty$. On a vu en début de question que la seconde intégrale admet aussi une limite quand $b \to +\infty$. On a donc (existence et valeur)

$$\int_{a}^{+\infty} \frac{f(t)}{t} dt = -\frac{F(a)}{a} + \int_{a}^{+\infty} \frac{F(t)}{t^2} dt$$

15. $t \mapsto \sin(t)/t$ est continue sur $]0, +\infty[$ et prolongeable par continuité en 0 (valeur 1). Le seul problème est au voisinage de $+\infty$. Comme $x \mapsto \int_0^x \sin(t) dt = 1 - \cos(x)$ est bornée sur \mathbb{R}^+ , on peut utiliser la question précédente pour justifier que l'intégrale existe au voisinage de ∞ et donc sur \mathbb{R}^+ .

Comme $t \mapsto 1 - \cos(t)$ est une primitive de sin sur \mathbb{R}^+ , une intégration par partie (on travaille sur un segment de \mathbb{R}^{+*} où il n'y a pas de problème pour celle-ci) donne

$$\forall [a,b] \subset \mathbb{R}^{+*}, \ \int_a^b \frac{\sin(t)}{t} \ dt = \left[\frac{1-\cos(t)}{t}\right]_a^b + \int_a^b \frac{1-\cos(t)}{t^2} \ dt$$

Comme $1 - \cos(t) = 2\sin^2(t)$, on a donc

$$\forall [a,b] \subset \mathbb{R}^{+*}, \ \int_a^b \frac{\sin(t)}{t} \ dt = \left[\frac{1-\cos(t)}{t}\right]_a^b + 2\int_a^b \frac{\sin^2(t/2)}{t^2} \ dt$$

Dans l'intégrale, on pose u = t/2 (changement de variable affine), on a alors

$$\forall [a,b] \subset \mathbb{R}^{+*}, \ \int_a^b \frac{\sin(t)}{t} \ dt = \left[\frac{1-\cos(t)}{t}\right]_a^b + 2\int_{a/2}^{b/2} \frac{\sin^2(u)}{u^2} \ du$$

Le membre de gauche admet une limite quand $a\to 0$ et quand $b\to +\infty$. Il en va de même du crochet (de limite nulle, en particulier car $1-\cos(t)\sim t^2/2$ au voisinage de 0) et en passant à la limite, on obtient l'existence de l'intégrale de $\sin^2(u)/u^2$ sur \mathbb{R}^+ avec

$$\int_0^{+\infty} \frac{\sin(t)}{t} dt = \int_0^{+\infty} \frac{\sin^2(t)}{t^2} dt$$

- 16. On utilise le résultat de continuité des intégrales à paramètres.
 - $\forall x \in \mathbb{R}^+, t \mapsto f(t)e^{-xt}$ est continue sur \mathbb{R}^+ .
 - $\forall t \in \mathbb{R}^+, x \mapsto f(t)e^{-xt}$ est continue sur \mathbb{R}^+ .
 - $\forall x \in \mathbb{R}^+, \ \forall t \in \mathbb{R}^+, \ |f(t)e^{-xt}| \leq |f(t)|$. Le majorant est intégrable sur \mathbb{R}^+ .

Le théorème s'applique et indique que $\mathcal{L}(f)$ est continue sur \mathbb{R}^+ .

- 17. On doit maintenant utiliser le théorème de régularité.
 - $\forall x \in \mathbb{R}^{+*}, t \mapsto f(t)e^{-xt}$ est intégrable sur \mathbb{R}^+ .
 - $\forall t \in \mathbb{R}^+, x \mapsto f(t)e^{-xt}$ est de classe C^{∞} sur \mathbb{R}^{+*} de dérivée k-ième $x \mapsto (-t)^k f(t)e^{-xt}$.
 - $\forall x \in \mathbb{R}^{+*}, t \mapsto (-t)^k f(t) e^{-xt}$ est continue sur \mathbb{R}^+ .
 - $\forall k \in \mathbb{N}^*$, $\forall [a,b] \subset \mathbb{R}^{+*}$, $\forall x \in [a,b]$, $\forall t \in \mathbb{R}^+$, $|(-t)^k f(t) e^{-xt}| \leq |f(t)| t^k e^{-at}$. $t \mapsto t^k e^{-at}$ est continue sur \mathbb{R}^+ , de limite nulle en $+\infty$ (car a > 0) et donc bornée sur \mathbb{R}^+ . Le majorant est donc intégrable sur \mathbb{R}^+ (puisque continu sur \mathbb{R}^+ et O(f(t)) au voisinage de $+\infty$, on n'a donc pas besoin du caractère borné de f).

Le théorème s'applique et indique que $\mathcal{L}(f)$ est de classe C^{∞} sur \mathbb{R}^{+*} avec

$$\forall k \in \mathbb{N}^*, \ \mathcal{L}(f)^{(k)} : x \mapsto \int_0^{+\infty} (-t)^k f(t) e^{-xt} dt$$

Pour la limite de $\mathcal{L}(f)$ en $+\infty$, on va utiliser le théorème de convergence dominée via la caractérisation séquentielle. On se donne donc une suite (x_n) de limite infinie. On peut sans perte de généralité supposer que $x_n \geq 1$ pour tout n (puisque $x_n \to +\infty$). On pose alors $g_n: t \mapsto f(t)e^{-x_n t}$.

- $\forall n, \ g_n \in C^0(\mathbb{R}^+).$
- $\forall t \in \mathbb{R}^+, g_n(t) \to 0$ quand $n \to +\infty$ et la suite (g_n) est donc simplement convergente vers 0 sur \mathbb{R}^+ .
- $\forall n, \ \forall t \in \mathbb{R}^+, \ |g_n(t)| \leq |f(t)|e^{-t}$ et le majorant est intégrable sur \mathbb{R}^+ (continu sur \mathbb{R}^+ et dominé par f au voisinage de $+\infty$).

On en déduit que $\mathcal{L}(f)(x_n) \to 0$ et, par caractérisation séquentielle,

$$\lim_{x \to +\infty} \mathcal{L}(f)(x) = 0$$

18. (a) La fonction f proposée est continue sur \mathbb{R}^+ et intégrable sur \mathbb{R}^+ . On peut alors utiliser ce qui précède. $\mathcal{L}(f)$ est ainsi de classe C^{∞} sur \mathbb{R}^{+*} et

$$\forall x > 0, \ \mathcal{L}(f)''(x) = \int_{0}^{+\infty} t^2 f(t) e^{-xt} \ dt$$

On en déduit que

$$\forall x > 0, \ \mathcal{L}(f)''(x) + \mathcal{L}(f)(x) = \int_0^{+\infty} (t^2 + 1)f(t)e^{-xt} \ dt = \int_0^{+\infty} e^{-xt} \ dt = \frac{1}{x}$$

(b) Soient α et β des fonctions de classe C^2 telles que $\alpha' \cos + \beta' \sin$. Posons alors $g = \alpha \cos + \beta \sin$. On a alors (avec l'hypothèse faite sur α, β)

$$g' = -\alpha \sin + \beta \cos$$
, $g'' = -\alpha \cos - \beta \sin - \alpha' \sin + \beta' \cos$

et ainsi

$$q'' + q = -\alpha' \sin + \beta' \cos$$

Pour que α et β conviennent, il suffit donc que $\begin{cases} \alpha'(x)\cos(x) + \beta'(x)\sin(x) = 0\\ -\alpha'(x)\sin(x) + \beta'(x)\cos(x) = \frac{1}{x} \end{cases}$. La résolution du système montre qu'il suffit que

$$\alpha'(x) = -\frac{\sin(x)}{r}$$
 et $\beta'(x) = \frac{\cos(x)}{r}$

Si h est continue sur \mathbb{R}^{+*} , $x\mapsto \int_1^x h(t)\ dt$ est une primitive de h sur \mathbb{R}^{+*} . Si, de plus, l'intégrale de h existe au voisinage de $+\infty$, on peut ajouter la constante $\int_1^{+\infty} h(t)\ dt$ (cela reste une primitive). $x\mapsto -\int_x^{+\infty} h(t)\ dt$ est ainsi aussi une primitive de h. On peut appliquer ceci avec $t\mapsto \frac{\sin(t)}{t}$ (on a prouvé l'existence de l'intégrale) et $t\mapsto \frac{\cos(t)}{t}$ (la preuve de l'existence est la même). On peut donc choisir

$$\alpha(x) = \int_{x}^{+\infty} \frac{\sin(t)}{t} dt \text{ et } \beta(x) = -\int_{x}^{+\infty} \frac{\cos(t)}{t} dt$$

On peut donc choisir $f_1(t) = \frac{\sin(t)}{t}$ et $f_2(t) = -\frac{\cos(t)}{t}$.

(c) On a ainsi une solution particulière h définie par

$$h(x) = \cos(x) \int_{x}^{+\infty} \frac{\sin(t)}{t} dt - \sin(x) \int_{x}^{+\infty} \frac{\cos(t)}{t} dt = \int_{x}^{+\infty} \frac{\sin(t-x)}{t} dt$$

Le changement de variable affine u = t - x donne

$$h(x) = \int_0^{+\infty} \frac{\sin(u)}{x+u} \ du$$

(d) L'ensemble des solutions de (E) sur \mathbb{R}^{+*} est un plan affine dirigé par l'ensemble des solutions de l'équation homogène y'' + y = 0, c'est à dire par $\text{Vect}(\cos, \sin)$. On obtient l'ensemble des solutions en ajoutant la solution particulière trouvée. Comme $\mathcal{L}(f)$ est solution sur \mathbb{R}^{+*} ,

$$\exists a, b/ \ \forall x > 0, \ \mathcal{L}(f)(x) = a\cos(x) + b\sin(x) + \int_0^{+\infty} \frac{\sin(t)}{x+t} \ dt$$

19. Soit x > 0. $t \mapsto \frac{\sin(t)}{x+t}$ est continue sur \mathbb{R}^+ . On peut effetcuer une IPP pour obtenir

$$\forall a > 0, \ \int_0^a \frac{\sin(t)}{x+t} \ dt = \left[-\frac{\cos(t)}{x+t} \right]_0^a - \int_0^a \frac{\cos(t)}{(x+t)^2} \ dt$$

On en déduit que

$$\forall a > 0, \ \left| \int_0^a \frac{\sin(t)}{x+t} \, dt \right| \le \left(\frac{1}{x} + \frac{1}{x+a} \right) + \int_0^a \frac{dt}{(x+t)^2} \le 2\left(\frac{1}{x} + \frac{1}{x+a} \right)$$

Tous les termes admettent une limite quand $a \to +\infty$ et le passage à la limite donne

$$\left| \int_0^{+\infty} \frac{\sin(t)}{x+t} \, dt \right| \le \frac{2}{x}$$

On conclut que

$$\lim_{x \to +\infty} \int_0^{+\infty} \frac{\sin(t)}{x+t} \, dt = 0$$

Comme $\mathcal{L}(f)$ est aussi de limite nulle en $+\infty$, on en conclut que $\lim_{x\to 0^+} a\cos + b\sin$ est de limite nulle en $+\infty$. En introduisant les suites $(2n\pi)$ et $(2n\pi + \pi/2)$, on en déduit que a=b=0 et donc que

$$\forall x > 0, \ \mathcal{L}(f)(x) = \int_0^{+\infty} \frac{\sin(t)}{x+t} \ dt$$

20. Remarquons que

$$\frac{\sin(t)}{x+t} - \frac{\sin(t)}{t} = -\frac{x\sin(t)}{t(x+t)}$$

On en déduit que

$$\forall t \ge 1, \ \left| \frac{\sin(t)}{x+t} - \frac{\sin(t)}{t} \right| \le |x| \frac{1}{t^2}$$

Le majorant étant intégrable sur $[1, +\infty[$, on peut intégrer! On obtient un majorant de limite nulle quand $x \to 0^+$:

$$\lim_{x \to 0^+} \int_1^{+\infty} \left(\frac{\sin(t)}{x+t} - \frac{\sin(t)}{t} \right) dt = 0$$

Par ailleurs, comme $\forall t, \ |\sin(t)| \le |t|$ et comme toutes les intégrales existent (fonctions continues ou prolongeables par continuité),

$$\left| \int_0^1 \left(\frac{\sin(t)}{x+t} - \frac{\sin(t)}{t} \right) dt \right| \le \int_0^1 \frac{x}{x+t} dt = x \left(\ln(x+1) - \ln(x) \right)$$

et le majorant est de limite nulle quand $x \to 0$. Finalement,

$$\lim_{x \to 0} \int_0^{+\infty} \frac{\sin(t)}{x+t} dt = \int_0^{+\infty} \frac{\sin(t)}{t} dt$$

21. On vient de voir que $\mathcal{L}(f)(x)$ tend vers $\int_0^{+\infty} \frac{\sin(t)}{t} dt$ quand $x \to 0$. Mais $\mathcal{L}(f)$ est continue en 0 et donc

$$\int_0^{+\infty} \frac{\sin(t)}{t} dt = \mathcal{L}(f)(0) = \int_0^{+\infty} \frac{dt}{1+t^2} = \frac{\pi}{2}$$

Partie 3 : phénomène de Gibbs

22. S_n est dérivable comme somme de fonctions dérivables et

$$S'_n(x) = \frac{4}{\pi} \sum_{k=0}^n \cos((2k+1)x) = \frac{4}{\pi} \operatorname{Re} \left(\sum_{k=0}^n e^{i(2k+1)x} \right)$$

Si $x \notin \pi \mathbb{Z}$ alors $e^{2ix} \neq 1$ et (somme géométrique)

$$\sum_{k=0}^{n} e^{i(2k+1)x} = e^{ix} \frac{1 - e^{2i(n+1)x}}{1 - e^{2ix}} = e^{i(n+1)x} \frac{\sin((n+1)x)}{\sin(x)}$$

On en déduit alors que

$$S'_n(x) = \frac{4}{\pi} \frac{\sin((n+1)x)\cos((n+1)x)}{\sin(x)} = \frac{2}{\pi} \frac{\sin(2(n+1)x)}{\sin(x)}$$

Le membre de gauche est continu en 0 et on peut donc intégrer cette égalité sur [0, x] pour tout $x \in [0, \pi]$. Comme $S_n(0) = 0$, on obtient

$$\forall x \in [0, \pi], \ S_n(x) = \frac{2}{\pi} \int_0^x \frac{\sin(2(n+1)t)}{\sin(t)} \ dt$$

23. On sait que

$$\forall t \in [0,1[, \frac{1}{1+t^2} = \sum_{k=0}^{\infty} (-t^2)^k]$$

Ainsi, en intégrant sur [0,1[,

$$\frac{\pi}{4} = \int_0^1 \frac{dt}{1+t^2} dt = \int_0^1 \sum_{k=0}^\infty (-1)^k t^{2k} dt$$

n étant fixé, on découpe la somme en deux morceaux :

$$\frac{\pi}{4} = \sum_{k=0}^{n} \int_{0}^{1} (-1)^{k} t^{2k} dt + \int_{0}^{1} \sum_{k=n+1}^{\infty} (-t^{2})^{k} dt = \sum_{k=0}^{n} \frac{(-1)^{k}}{2k+1} + \int_{0}^{1} \sum_{k=n+1}^{\infty} (-t^{2})^{k} dt$$

La somme est encore géométrique et on peut écrire cela sous la forme

$$\frac{\pi}{4} - \sum_{k=0}^{n} \frac{(-1)^k}{2k+1} = \int_0^1 \frac{(-t^2)^{n+1}}{1+t^2} dt = (-1)^{n+1} \int_0^1 \frac{t^{2n+2}}{1+t^2} dt$$

On en déduit que

$$\left| \frac{\pi}{4} - \sum_{k=0}^{n} \frac{(-1)^k}{2k+1} \right| \le \int_0^1 t^{2n+2} dt = \frac{1}{2n+3} \to 0$$

et ainsi

$$\sum_{k=0}^{+\infty} \frac{(-1)^k}{2k+1} = \frac{\pi}{4}$$

24. On a $\sin((2n+1)\frac{\pi}{2}) = \sin(n\pi + \frac{\pi}{2}) = (-1)^n$ et donc

$$S_n\left(\frac{\pi}{2}\right) = \frac{4}{\pi} \sum_{k=0}^n \frac{(-1)^k}{2k+1}$$

On en déduit que

$$\lim_{n \to +\infty} S_n\left(\frac{\pi}{2}\right) = 1$$

25. On a $\sin((2n+1)(\pi-x)) = \sin((2n+1)\pi - (2n+1)x) = \sin((2n+1)x)$. Il en ressort alors que

$$\forall x, \ S_n(\pi - x) = S_n(x)$$

On fixe maintenant $x \in]0, \pi/2]$. Comme $\frac{\sin(2(n+1)t)}{t}$ est continue sur]0, x] et prolongeable par continuité en 0, on peut utiliser la question 22 pour écrire que

$$S_n(x) = \frac{2}{\pi} \int_0^x \sin(2(n+1)t) \left(\frac{1}{\sin(t)} - \frac{1}{t}\right) dt + \frac{2}{\pi} \int_0^x \frac{\sin(2(n+1)t)}{t} dt$$

 $t\mapsto \frac{1}{\sin(t)}-\frac{1}{t}=\frac{t-\sin(t)}{t\sin(t)}$ est continue sur]0,x] et prolongeable par continuité en 0 (équivalent à $\frac{t^3}{6t^2}\to 0$). On peut alors utiliser la question 12 avec cette fonction de $\varphi:t\mapsto \sin(2t)$, on a

$$\lim_{n \to +\infty} \int_0^x \sin(2(n+1)t) \left(\frac{1}{\sin(t)} - \frac{1}{t}\right) dt = 0$$

Par ailleurs, le changement de variable u=2(n+1)t donne

$$\int_0^x \frac{\sin(2(n+1)t)}{t} dt = \int_0^{2(n+1)x} \frac{\sin(u)}{u} du$$

Comme x > 0, cette quantité tend vers $\int_0^{+\infty} \frac{\sin(u)}{u} du = \frac{\pi}{2}$ quand $n \to +\infty$. En conclusion, on a

$$\forall x \in]0, \pi/2], \lim_{n \to +\infty} S_n(x) = 1$$

26. On vient de voir que $\forall x \in]0, \pi/2], S_n(x) \to 1 = f(x).$

Comme $f(\pi - x) = f(x)$ et $S_n(\pi - x) = S_n(x)$, la propriété reste vraie pour $x \in [\pi, 2, \pi[$.

On a aussi $S_n(0) = 0 \to 0 = f(0)$ et $S_n(\pi) = 0 \to 0 = f(\pi)$ et la propriété est finalement valable sur $[0, \pi]$.

Par imparité des S_n et de f, cette propriété est finalement valable sur \mathbb{R} . On a donc convergence simple sur \mathbb{R} de (S_n) .

27. On a immédiatement $\varphi_n(0) = 0 \to 0$.

Soit maintenant $x \in]0,\pi]$. On a $\sin(\frac{x}{2n}) \sim \frac{x}{2n}$ quand $n \to +\infty$. On en déduit que $\varphi_n(x) \to \frac{\sin(x)}{2n} = \varphi(x)$.

On a montré que (φ_n) converge simplement sur $[0,\pi]$ vers φ

28. Il est immédiat, par théorèmes d'opération, que φ est continue sur $]0, \pi/2]$. Comme $\sin(x) \sim_0 x$ on a aussi continuité en 0.

La question 22 donne

$$S_n\left(\frac{\pi}{2(n+1)}\right) = \frac{2}{\pi} \int_0^{\frac{\pi}{2(n+1)}} \frac{\sin(2(n+1)t)}{\sin(t)} dt$$

Le changement de variable affine u = 2(n+1)t donne

$$S_n\left(\frac{\pi}{2(n+1)}\right) = \frac{2}{\pi} \int_0^{\pi} \varphi_{n+1}(u) \ du$$

On veut intervertir limite et intégrale et on pense au théorème de convergence dominée.

- (φ_{n+1}) est une suite de fonctions continue sur $[0,\pi]$ qui converge simplement sur $[0,\pi]$ vers φ qui est elle même continue sur $[0,\pi]$.
- La fonction $t\mapsto \sin(t)/t$ est continue sur $[0,\pi/2]$ qui est un segment. Cette fonction est donc bornée sur ce segment et atteint ses bornes. Ainsi, il existe un réel t_1 telles que

$$\forall t \in [0, \pi/2], \ m = \frac{\sin(t_1)}{t_1} \le \frac{\sin(t)}{t}$$

Comme m > 0, on peut aussi écrire que

$$\forall t \in [0, \pi/2], \ 0 \le \frac{t}{\sin(t)} \le \frac{1}{m}$$

On va appliquer cela pour $x \in]0,\pi]$ et $n \geq 0$ à $t = \frac{x}{2(n+1)} \in [0,\pi/2]$ et le fait que pour $x \in]0,\pi], \ 0 \leq \frac{\sin(x)}{x} \leq 1$:

$$\forall n \in \mathbb{N}, \ \forall x \in]0, \pi], \ |\varphi_{n+1}(x)| = \frac{\sin(x)}{x} \frac{x/(2(n+1))}{\sin(x/(2(n+1)))} \le \frac{1}{m}$$

Le majorant, qui est constant, est intégrable sur $[0, \pi]$.

Le théorème s'applique et donne

$$\lim_{n \to +\infty} S_n \left(\frac{\pi}{2(n+1)} \right) = \frac{2}{\pi} \int_0^{\pi} \frac{\sin(x)}{x} dx$$

Comme $f(\pi/(2(n+1))) = 1 \rightarrow 1$, on a donc

$$\lim_{n \to +\infty} \left(f\left(\frac{\pi}{2(n+1)}\right) - S_n\left(\frac{\pi}{2(n+1)}\right) \right) = \frac{2}{\pi} \left(\frac{\pi}{2} - \int_0^{\pi} \frac{\sin(x)}{x} dx\right) = \frac{2}{\pi} \int_{\pi}^{+\infty} \frac{\sin(x)}{x} dx$$

29. En utilisant le DSE de sin, on sait que

$$\forall x \in]0, \pi], \ \frac{\sin(x)}{x} = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n+1)!}$$

La relation reste vraie pour x=0. La série entière qui apparaît est de rayon de convergence infini et converge donc normalement sur $[0,\pi]$. Quand on intégre sur $[0,\pi]$, on est dans le cas simple où l'on peut intervertir somme et intégrale sur un segment, ceci donne

$$\int_0^\pi \frac{\sin(x)}{x} dx = \sum_{n=0}^\infty \int_0^\pi (-1)^n \frac{x^{2n}}{(2n+1)!} dx = \sum_{n=0}^\infty (-1)^n \frac{\pi^{2n+1}}{(2n+1)(2n+1)!}$$

Avec la question 28, on a donc

$$\lim_{n \to +\infty} S_n \left(\frac{\pi}{2(n+1)} \right) = \frac{2}{\pi} \sum_{n=0}^{\infty} \frac{\pi^{2n+1}}{(2n+1)(2n+1)!} = 2 \sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n}}{(2n+1)(2n+1)!}$$

A nouveau, $f(\pi/(2(n+1))) = 1 \rightarrow 1$ et donc

$$\lim_{n \to +\infty} \left(S_n \left(\frac{\pi}{2(n+1)} \right) - f \left(\frac{\pi}{2(n+1)} \right) \right) = 2 \sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n}}{(2n+1)(2n+1)!} - 1$$

30. Posons $u_n = (-1)^n \frac{\pi^{2n}}{(2n+1)(2n+1)!}$. (u_n) est une suite alternée qui est de limite nulle (la série associé converge). De plus

$$\frac{|u_{n+1}|}{|u_n|} = \frac{\pi^2(2n+1)}{(2n+3)^2(2n+2)} \le \frac{\pi^2}{(2n+3)^2}$$

Pour $n \geq 1$, ce quotient est ≤ 1 . La suite $(|u_n|)$ décroît donc à partir du rang 1. On en déduit que $\sum_{k \geq n} u_k$ est du signe de u_n pour $n \geq 1$. En particulier, pour n = 4,

$$\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n}}{(2n+1)(2n+1)!} - \sum_{n=0}^{3} (-1)^n \frac{\pi^{2n}}{(2n+1)(2n+1)!} \ge 0$$

En particulier,

$$2\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n}}{(2n+1)(2n+1)!} - 1 \ge 2\sum_{n=0}^{3} (-1)^n \frac{\pi^{2n}}{(2n+1)(2n+1)!} - 1$$

On peut raisonnablement penser que cette quantité est > 0.17, ce que je ne vérifie pas et on conclut.

En particulier

$$||S_n - f||_{\infty,]0, \pi/2[} \ge \left(S_n \left(\frac{\pi}{2(n+1)} \right) - f \left(\frac{\pi}{2(n+1)} \right) \right)$$

montre que $||S_n - f||_{\infty,]0, \pi/2[}$ n'est pas de limite nulle. On n'a donc pas de convergence uniforme sur $]0, \pi/2[$.