EXERCICE 1

Polynôme de Laguerre et méthode de quadrature de Gauss

Dans tout l'exercice, on considère un entier $n \in \mathbb{N}^*$.

Partie I - Produit Scalaire sur $\mathbb{R}_n[X]$

I.1 - Généralités

Pour tout couple $(P,Q) \in \mathbb{R}_n[X]^2$, on note :

$$(P \mid Q) = \int_0^{+\infty} P(t)Q(t)e^{-t}dt.$$

- **Q1.** Justifier que l'intégrale définissant $(P \mid Q)$ est convergente.
- **Q2.** Montrer que l'application $(\cdot \mid \cdot) : \mathbb{R}_n[X] \times \mathbb{R}_n[X] \to \mathbb{R}$ est un produit scalaire.

I.2 - Calcul d'un produit scalaire

Q3. Soit $k \in [1, n]$. A l'aide d'une intégration par parties, établir que :

$$\int_{0}^{+\infty} t^{k} e^{-t} dt = k \int_{0}^{+\infty} t^{k-1} e^{-t} dt.$$

Q4. Conclure que $(X^k \mid 1) = k!$ pour tout entier $k \in [0, n]$.

Partie II - Construction d'une base orthogonale

On considère l'application α définie sur $\mathbb{R}_n[X]$ par :

$$\forall P \in \mathbb{R}_n[X], \quad \alpha(P) = XP'' + (1 - X)P'.$$

II.1 - Propriétés de l'application α

- **Q5.** Montrer que α est un endomorphisme de $\mathbb{R}_n[X]$.
- **Q6.** Écrire la matrice de α dans la base $(1, X, \dots, X^n)$.
- **Q7.** En déduire que α est diagonalisable et que $Sp(\alpha) = \{-k \mid k \in [0, n]\}$.

II.2 - Vecteurs propres de l'application α

On fixe un entier $k \in [0, n]$.

- **Q8.** Quelle est la dimension de $\ker(\alpha + k \operatorname{Id}_{\mathbb{R}_n[X]})$?
- **Q9.** En déduire qu'il existe un unique polynôme $P_k \in \mathbb{R}_n[X]$, de coefficient dominant égal à 1, vérifiant $\alpha(P_k) = -kP_k$.
- **Q10.** Justifier que P_k est de degré k.
- **Q11.** Déterminer P_0 et P_1 . Vérifier que $P_2 = X^2 4X + 2$.

II.3 - Orthogonalité de la famille (P_0, \ldots, P_n)

On fixe un couple $(P,Q) \in \mathbb{R}_n[X]^2$.

- Q12. Montrer que $(\alpha(P) \mid Q) = -\int_0^{+\infty} tP'(t)Q'(t)e^{-t}dt$.
- **Q13.** En déduire que $(\alpha(P) \mid Q) = (P \mid \alpha(Q))$.
- **Q14.** Montrer que (P_0, \ldots, P_n) est une base orthogonale de $\mathbb{R}_n[X]$. On pourra utiliser **Q9** et **Q13**.

Partie III - Méthode de quadrature de Gauss

On admet que le polynôme P_n admet n racines réelles **distinctes** que l'on note x_1, \ldots, x_n . On souhaite montrer qu'il existe $(\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n$ tel que :

$$\forall P \in \mathbb{R}_{n-1}[X], \quad \int_0^{+\infty} P(t)e^{-t}dt = \sum_{i=1}^n \lambda_i P(x_i). \quad (*)$$

Q15. Montrer qu'un *n*-uplet $(\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n$ vérifie (*) si et seulement si :

$$\begin{pmatrix} 1 & 1 & \dots & 1 \\ x_1 & x_2 & \dots & x_n \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{n-1} & x_2^{n-1} & \dots & x_n^{n-1} \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix} = \begin{pmatrix} 0! \\ 1! \\ \vdots \\ (n-1)! \end{pmatrix}.$$

- **Q16.** En déduire qu'il existe un unique *n*-uplet $(\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n$ vérifiant (*)
- **Q17.** Déterminer un polynôme $P \in \mathbb{R}_{2n}[X]$ tel que :

$$\int_0^{+\infty} P(t)e^{-t}dt \neq \sum_{i=0}^n \lambda_i P(x_i).$$