Semaine 5:

Lundi: 3,48/5

- 1. Donner l'énoncé mathématique de l'affirmation : " la famille $(f_a)_{a\in\mathbb{R}}$ est une famille libre. " Précisez les étapes d'une démonstration de cette affirmation en utilisant un raisonnement par récurrence.
- **2.** Citer le théorème d'Euler dans l'anneau $(\mathbb{Z}/n\mathbb{Z}, +, \times)$.
- 3. Compléter la définition suivante par 4 énoncés équivalents :

Soit $M \in \mathcal{M}_n(\mathbb{K})$ et $\lambda \in \mathbb{K}$. Alors : \bullet

- 4. Donner la définition du polynôme caractéristique de M.
- **5.** Si $\chi_M = \sum a_k X^k$, précisez les valeurs de a_0, a_{n-1} et a_n .

Mardi: 3,29/5

- 1. Quels sont les idéaux de $\mathbb{R}[X]$?
- 2. Quel est le polynôme caractéristique d'une matrice triangulaire?
- 3. Quel est le polynôme caractéristique de la matrice $A = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 4 \end{pmatrix}$
- 4. Rappeler la formule du déterminant.
- 5. Rappeler les formules de changement de bases.

Mercredi: 3,14/5

- 1. Donner la définition d'un groupe. On écrira les propriétés à vérifier en langage mathématique.
- 2. Rappeler la formule du déterminant de Vandermonde (on écrira la matrice correspondante)
- 3. Donner une base et la dimension de l'ensemble des matrices triangulaires supérieures, puis de l'ensemble des matrices antisymétriques.
- 4. Rappeler la définition du polynôme annulateur d'une matrice carrée.
- **5.** Quel est le polynôme minimal de aI_n pour $a \in \mathbb{K}$.

Jeudi: 3,68/5

- 1. Citer le théorème de Lagrange pour les groupes.
- 2. Quel est le polynôme minimal d'une matrice triangulaire dont les coefficients diagonaux sont 2 à 2 distincts.

1

- 3. Quelle est la formule générale de $E_{i,j}E_{k,l}$
- **4.** Quel est le polynôme caractéristique de aI_n pour $a \in \mathbb{K}$.
- 5. Quel sont les polynômes caractéristique et minimal de $\begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$

Vendredi: 3,5/5

- **1.** Soit $M \in \mathcal{M}_n(\mathbb{K})$. Quelle est la dimension de l'algèbre $(\mathbb{K}[M], +, \times, \cdot)$?
- 2. Rappeler les formules de changement de bases.
- 3. Justifier que toute matrice de $\mathcal{M}_{2k+1}(\mathbb{R})$ admet au moins une valeur propre réelle.
- 4. Citer au moins 5 invariants de similitude.
- 5. Citer le théorème des restes chinois et donner un exemple d'application.

Lundi

- 1. Voir semaine 4
- 2. Voir semaine 4
- 4. Voir semaine 4.
- **5.** Voir semaine 4.

Mardi

- 1. Voir semaine 4.
- 2. Quel est le polynôme caractéristique d'une matrice triangulaire ? $\chi_M = \prod_{i=1}^n a_{i,i}$.
- 3. Quel est le polynôme caractéristique de la matrice $A = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 4 \end{pmatrix}$

$$\chi_A = X^4 - 4X^3 + 3X^2 - 2X + 1$$

- 4. Voir semaine 4.
- 5. Rappeler les formules de changement de bases.

 $Si\ P = P_{\beta}^{\beta'}$ est la matrice de passage de l'ancienne base β vers la nouvelle base β' , alors $P_{\beta}^{\beta'}$ est la matrice de l'identité depuis la base de départ β' vers la base d'arrivée β . Alors si X est la matrice des coordonnées d'un vecteur u exprimé dans la base β et X' celle des coordonnées du même vecteur dans la base β' , alors X = PX'.

Si f est un endomorphisme dont la matrice dans la base β est A et celle dans la base β' est B alors $B = P^{-1}AP$.

Mercredi

- 1. Voir semaine 4
- 2. Rappeler la formule du déterminant de Vandermonde (on écrira la matrice correspondante)

$$\begin{vmatrix} 1 & a_1 & a_1^2 \dots & a_1^{n-1} \\ 1 & a_2 & a_2^2 \dots & a_2^{n-1} \\ \vdots & \vdots & \vdots \dots & \vdots \\ 1 & a_n & a_n^2 \dots & a_n^{n-1} \end{vmatrix} = \prod_{1 \leq i < j \leq n} (a_j - a_i).$$

- **3.** Voir semaine 4.
- 4. Rappeler la définition du polynôme annulateur d'une matrice carrée.

Pour une matrice M, l'ensemble des polynômes annulateurs de M est un idéal non réduit à $\{0\}$ par exemple par le théorème de Cayley-Hamilton. Ce idéal est monogène. Le polynôme annulateur de la matrice carrée M est le générateur unitaire de l'idéal annulateur de M.

2

5. Quel est le polynôme minimal de aI_n pour $a \in \mathbb{K}$.

$$\mu_{aI_n} = (X - a) \ pour \ a \in \mathbb{K}.$$

Jeudi

- 1. Voir semaine 4
- 2. Quel est le polynôme minimal d'une matrice triangulaire dont les coefficients diagonaux sont 2 à 2 distincts. $\mu_M = \chi_M = \prod_{i=1}^n a_{i,i}$
- 3. Voir semaine 4
- **4.** Quel est le polynôme caractéristique de aI_n pour $a \in \mathbb{K}$. $\chi_{aI_n} = (X a)^n$ pour $a \in \mathbb{K}$.
- 5. Quel sont les polynômes caractéristique et minimal de $\begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$

Si
$$M = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$$
, $\chi_M = X^2 - X + 1 = (X - e^{i\pi/3})(X - e^{-i\pi/3})$. Comme $\mu_M | \chi_M$ et $\mu_M \in \mathbb{R}[X]$, on en déduit que $\mu_M = \chi_M$.

Vendredi

- 1. Soit $M \in \mathcal{M}_n(\mathbb{K})$. Quelle est la dimension de l'algèbre $(\mathbb{K}[M], +, \times, \cdot)$? $dim(\mathbb{K}[M], +, \times, \cdot) = d$ où $d = deg(\mu_M)$.
- 2. Voir semaine 5
- 3. Justifier que toute matrice de $\mathcal{M}_{2k+1}(\mathbb{R})$ admet au moins une valeur propre réelle. $Si\ M \in \mathcal{M}_{2k+1}(\mathbb{R}),\ \chi_M$ est un polynôme réel de degré impair. Par théorème des valeurs intermédiaires, χ_M admet au moins une racine. Comme $Sp_{\mathbb{R}}(M) = Racines(\chi_M),\ M$ admet au moins une valeur propre réelle.
- 4. Voir semaine 4
- 5. Citer le théorème des restes chinois et donner un exemple d'application. Si n et p sont premiers entre eux, l'application $\phi : \mathbb{Z}/np\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$ définie par $\phi(x \bmod np) = (x \bmod n, x \bmod p)$ est un isomorphisme d'anneaux.

 $Si \ nu + pv = 1, \ les \ solutions \ du \ système \ \left\{ \begin{array}{l} x \equiv a[n] \\ x \equiv b[p] \end{array} \right. \ sont \ les \ x \equiv x_0[np] \ où \ x_0 = nub + pva.$

On peut aussi en déduire que si n et p sont premiers entre eux, $\varphi(np) = \varphi(n)\varphi(p)$.