SESSION 2001 MP006

CONCOURS COMMUNS POLYTECHNIQUES

ÉPREUVE SPÉCIFIQUE - FILIÈRE MP

MATHÉMATIQUES 2

DURÉE: 4 heures

Les calculatrices programmables et alphanumériques sont **autorisées**, sous réserve des conditions définies dans la circulaire n99-186 du 16/11/99.

UTILISATIONS DES MATRICES COMPAGNON

Notations et définitions :

Dans tout le problème K désigne \mathbb{R} ou \mathbb{C} et n est un entier naturel.

Si u est un endomorphisme d'un K-espace vectoriel E, on note $u^0 = id_E$ et $\forall n \in \mathbb{N}, u^{n+1} = u^n \circ u$.

On note $K_n[X]$ la K-algèbre des polynômes de degré inférieur ou égal à n, $\mathcal{M}_n(K)$ la K-algèbre des matrices carrées de taille n à coefficients dans K de matrice unité I_n et $GL_n(K)$ le groupe des matrices inversibles de $\mathcal{M}_n(K)$; les éléments de $\mathcal{M}_n(K)$ sont notés $M = (m_{i,j})$.

Pour une matrice A de $\mathcal{M}_n(K)$, on note tA la transposée de la matrice A, $\operatorname{rg}(A)$ son rang, $\chi_A = \det(A - XI_n)$ son polynôme caractéristique et $\operatorname{Sp}(A)$ l'ensemble de ses valeurs propres.

Si $P = X^n + a_{n-1}X^{n-1} + \ldots + a_1X + a_0$ est un polynôme unitaire de $K_n[X]$ on lui associe

$$+a_{n-1}X^{n-1}+\ldots+a_1X+a_0$$
 est un polynome unitaire de $K_n[X]$ on Y la matrice compagnon $C_P=egin{pmatrix} 0 & 0 & . & . & 0 & -a_0 \ 1 & 0 & . & . & 0 & -a_1 \ 0 & 1 & 0 & . & 0 & -a_2 \ . & . & . & . & . & . \ 0 & . & 0 & 1 & 0 & -a_{n-2} \ 0 & . & . & 0 & 1 & -a_{n-1} \end{pmatrix} \in \mathcal{M}_n(K)$

(c'est-à-dire la matrice $C_P = (c_{i,j})$ est définie par $c_{i,j} = 1$ pour i - j = 1, $c_{i,n} = -a_{i-1}$ et $c_{i,j} = 0$ dans les autres cas).

Les parties II. III. et IV. utilisent les résultats de la partie I. et sont indépendantes entre elles.

I. Propriétés générales

Dans cette partie on considère le polynôme $P=X^n+a_{n-1}X^{n-1}+\ldots+a_1X+a_0$ de $K_n[X]$ et C_P sa matrice compagnon associée.

- 1. Montrer que C_P est inversible si et seulement si $P(0)\neq 0$.
- 2. Calculer le polynôme caractéristique de la matrice C_P et déterminer une constante k telle que $\chi_{C_p} = kP$.
- 3. Soit Q un polynôme de $K_n[X]$, déterminer une condition nécessaire et suffisante pour qu'il existe une matrice A de $\mathcal{M}_n(K)$ telle que $\chi_A = Q$.
- 4. On note tC_P la transposée de la matrice C_P .
 - (a) Justifier la proposition : $\operatorname{Sp}(C_P) = \operatorname{Sp}({}^tC_P)$.

- (b) Soit λ élément de Sp (tC_P), déterminer le sous-espace propre de tC_P associé à λ .
- (c) Montrer que ${}^t\!C_P$ est diagonalisable si et seulement si P est scindé sur K et a toutes ses racines simples.
- (d) On suppose que P admet n racines $\lambda_1, \lambda_2, \ldots, \lambda_n$ deux à deux distinctes, montrer que tC_P est

diagonalisable et en déduire que le déterminant de Vandermonde $\begin{vmatrix} 1 & 1 & \dots & 1 \\ \lambda_1 & \lambda_2 & \dots & \lambda_n \\ \lambda_1^2 & \lambda_2^2 & \dots & \lambda_n^2 \\ \dots & \dots & \dots & \dots \\ \lambda_1^{n-1} & \lambda_2^{n-1} & \dots & \lambda_n^{n-1} \end{vmatrix}$

est non nul.

5. Exemples:

(a) Déterminer une matrice A (dont on précisera la taille n) vérifiant : $A^{2002}=A^{2001}+A^{2000}+1999I_n. \label{eq:A2001}$

$$A^{2002} = A^{2001} + A^{2000} + 1999I_n.$$

(b) Soit E un K-espace vectoriel de dimension n et f un endomorphisme de E vérifiant : $f^{n-1}\neq 0$ et $f^n=0$; montrer que l'on peut trouver une base de E dans laquelle la matrice de f est une matrice compagnon que l'on déterminera.

II. Localisation des racines d'un polynôme

Soit $A = (a_{i,j})$ une matrice de $\mathcal{M}_n(\mathbb{C})$, on pose pour tout entier $1 \leq i \leq n$:

$$r_i = \sum_{j=1}^{n} |a_{i,j}| \text{ et } D_i = \{z \in \mathbb{C}, |z| \le r_i\}.$$

Pour
$$X = \begin{pmatrix} x_1 \\ x_2 \\ \cdot \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{C})$$
, on note $||X||_{\infty} = \max_{1 \leqslant i \leqslant n} |x_i|$.

6. Soit
$$\lambda \in \mathrm{Sp}\,(A)$$
 et $X = \begin{pmatrix} x_1 \\ x_2 \\ \cdot \\ x_n \end{pmatrix}$ un vecteur propre associé à λ .

Montrer que pour tout entier $1 \le i \le n : |\lambda x_i| \le r_i ||X||_{\infty}$.

- 7. Démontrer que $\operatorname{Sp}(A) \subset \bigcup_{i=1}^{n} D_k$.
- 8. Soit $P = X^n + a_{n-1}X^{n-1} + \ldots + a_1X + a_0$ un polynôme de $\mathbb{C}[X]$, établir que toutes les racines de Psont dans le disque fermé de centre 0 et de rayon $R = \max\{|a_0|, 1+|a_1|, 1+|a_2|, \ldots, 1+|a_{n-1}|\}$.
- 9. Application:

Soit a, b, c et d quatre entiers naturels distincts et non nuls, montrer que l'équation d'inconnue n:

$$n^a + n^b = n^c + n^d$$

n'admet pas de solution sur $\mathbb{N} \setminus \{0,1\}$.

III. Suites récurrentes linéaires

On note $E = \mathbb{C}^{\mathbb{N}}$ l'espace vectoriel des suites de complexes et si u est une suite de E, on écrira u(n) à la place de u_n pour désigner l'image de n par u.

On considère le polynôme $P = X^p + a_{p-1}X^{p-1} + \ldots + a_0$ de $\mathbb{C}[X]$ avec $a_0 \neq 0$ et on lui associe le sous-espace vectoriel F de E formé des éléments u vérifiant la relation :

$$\forall n \in \mathbb{N} : u(n+p) = -a_{p-1}u(n+p-1) - \dots - a_0u(n).$$

- 10. Montrer que si λ est racine de P alors la suite $n \mapsto \lambda^n$ est élément de F.
- 11. Soit φ l'application de F vers \mathbb{C}^p définie par : $u \mapsto (u(0), u(1), \dots, u(p-1))$, montrer que φ est un isomorphisme d'espaces vectoriels. Quelle est la dimension de F?
- 12. Pour tout entier $0 \le i \le p-1$ on définit les élements e_i de F par :

$$e_i(i) = 1$$
 et, lorsque $0 \le j \le p - 1$ et $j \ne i$, $e_i(j) = 0$.

- (a) Déterminer pour $0 \le i \le p-1$ $e_i(p)$.
- (b) Montrer que le système de vecteurs $(e_0, e_1, ..., e_{p-1})$ est une base de F.
- (c) Soit u un élément de F, établir que $u = \sum_{i=0}^{p-1} u(i)e_i$.
- 13. Si u est un élément de E, on définit l'élément f(u) de E par : $f(u): n \mapsto u(n+1)$. Montrer que l'application f ainsi définie est un endomorphisme de E et que F est stable par f.
- 14. Si g est l'endomorphisme de F induit par f, montrer que la matrice de g dans la base $(e_0, e_1, \ldots, e_{p-1})$ est tC_P .
- 15. On suppose que P admet p racines non nulles et deux à deux distinctes : $\lambda_0, \lambda_1, \ldots, \lambda_{p-1}$.
 - (a) Déterminer une base de F formée de vecteurs propres de g.
 - (b) En déduire que, si u est élément de F, il existe des constantes complexes $k_0, k_1, \ldots, k_{p-1}$ telles que : $\forall n \in \mathbb{N}, u(n) = k_0 \lambda_0^n + k_1 \lambda_1^n + \ldots + k_{p-1} \lambda_{p-1}^n$.
- 16. Exemple: (On revient à la notation usuelle u_n)

Soit a, b et c trois réels distincts.

Déterminer une base de l'espace vectoriel des suites définies par u_0 , u_1 et u_2 et par la relation de récurrence valable pour tout $n \in \mathbb{N}$:

$$u_{n+3} = (a+b+c)u_{n+2} - (ab+ac+bc)u_{n+1} + abc.$$

IV. Matrices vérifiant : rg(U - V) = 1

Dans cette partie, pour une matrice A, on notera C_A la matrice compagnon du polynôme $(-1)^n \chi_A$.

17. Une matrice A est-elle nécessairement semblable à la matrice compagnon C_A ?

Pour tout couple (U, V) de matrices de $GL_n(K)$, on considère les deux propositions suivantes, que l'on identifie chacune par un symbole :

- (*) : rg(U V) = 1
- (**): Il existe une matrice inversible P telle que $U = P^{-1}C_UP$ et $V = P^{-1}C_VP$.
- 18. Montrer qu'un couple (U, V) de matrices distinctes de $GL_n(K)$ vérifiant (**) vérifie (*).
- 19. Déterminer un couple (U, V) de matrices de $GL_2(K)$ (n = 2) vérifiant (*) mais ne vérifiant pas (**) et déterminer le plus grand commun diviseur des polynômes χ_U et χ_V .

Dans la suite de cette partie, (U, V) est un couple de matrices de $GL_n(K)$ vérifiant (*) et tel que χ_U et χ_V sont deux polynômes premiers entre eux.

Soit E un K-espace vectoriel de dimension n et de base B, on désigne par u et v les automorphismes de E tels que U (respectivement V) soit la matrice de u (respectivement v) dans la base B.

Enfin on pose H = Ker(u - v).

20. Montrer que H est un hyperplan vectoriel de E.

21. Soit $F \neq \{0\}$ un sous-espace vectoriel de E stable par u et par v c'est-à-dire :

$$u(F) \subset F$$
 et $v(F) \subset F$.

On notera u_F (respectivement v_F) l'endomorphisme induit par u (respectivement v) sur F. On rappelle que χ_{u_F} divise χ_u .

- (a) Montrer que F n'est pas inclus dans H.
- (b) On suppose que $F \neq E$, montrer que F + H = E puis que l'on peut compléter une base B_F de F par des vecteurs de H pour obtenir une base B' de E. En utilisant les matrices de U et V dans la base B' montrer que l'on aboutit à une contradiction.
- (c) Quels sont les seuls sous-espaces stables à la fois par u et par v?
- 22. Pour $j \in \mathbb{N}$, on note $G_j = \{x \in E, u^j(x) \in H\}$.
 - (a) Montrer que les sous-espaces G_j sont des hyperplans vectoriels de E.
 - (b) Montrer que $\bigcap_{j=0}^{n-2} G_j \neq \{0\}$.
 - (c) Soit y un vecteur non nul de $\bigcap_{j=0}^{n-2} G_j$, on pose pour $0 \le j \le n-1$: $e_j = u^j(y)$.

Montrer que $B'' = (e_0, e_1, ..., e_{n-1})$ est une base de E.

(On pourra considérer $F = \text{Vect}\{y, u(y), \dots, u^{p-1}(y)\}$ où p est le plus grand entier naturel non nul pour lequel la famille $(y, u(y), \dots, u^{p-1}(y))$ est libre).

- (d) Montrer que la matrice de u (respectivement v) dans B'' est C_U (respectivement C_V).
- (e) Conclure.
- 23. Application:

Soit u et v deux automorphismes d'un K-espace vectoriel E de dimension n vérifiant :

$$rg(u-v) = 1$$
, $\chi_u(X) = (-1)^n (X^n + 1)$ et $\chi_v(X) = (-1)^n (X^n - 1)$.

En utilisant une action de groupe, montrer que le groupe engendré par u et v est fini de cardinal inférieur ou égal à (2n)!.

Fin de l'énoncé.