Exercices en temps libre : Semaine 0

Exercice 1:

Soient $f: E \mapsto F$ et $g: F \mapsto G$ deux applications.

- 1. Montrer que si $g \circ f$ est injective et f surjective, alors g est injective.
- **2.** Montrer que si $g \circ f$ est surjective et g est injective, alors f est surjective.

Exercice 2:

On note $E = \mathbb{R}_n[X]$ et f l'application : $P \mapsto f(P) = X(P(X) - P(X - 1))$.

- 1. Vérifier que f est un endomorphisme du \mathbb{R} -ev E.
- **2.** Former la matrice A de f dans la base canonique $\mathcal{B} = (1, X, \dots, X^n)$ de E.
- **3.** Déterminer le noyau, l'image, le rang de f.
- **4.** Définition: on dit que λ est une valeur propre de f si et seulement s'il existe un polynôme $P \in E$ NON NUL telle que $f(P) = \lambda \cdot P$.

 Montrer que λ est valeur propre de f ssi $det(f \lambda Id_E) = 0$.
- **5.** Quelles sont les valeurs propres de f?

Conseils de lecture :

- 1. Exercice 59 d'algèbre de la banque CCP 2016
- 2. Exercice 60 d'algèbre de la banque CCP 2016

CORRECTIONS:

Exercice 1:

- 1. Soient y_1, y_2 dans F tels que $g(y_1) = g(y_2)$. La fonction f est surjective donc il existe x_1, x_2 dans E tels que $f(x_i) = y_i$. Alors $g(f(x_1)) = g(f(x_2))$. Comme $g \circ f$ est injective, $x_1 = x_2$ et par suite, $y_1 = y_2$. Donc g est injective.
- **2.** Soit $y \in F$ et z = g(y). Par surjectivité de $g \circ f$, il existe x dans E tel que $g \circ f(x) = z$. Alors $g \circ f(x) = g(y)$ et par injectivité de g, y = f(x), donc f est surjective.

Exercice 2:

1. On a, pour tout $\alpha \in \mathbb{R}$ et tous $P,Q \in \mathbb{R}[X]$: $f(\alpha P+Q) = X((\alpha P+Q)(X) - (\alpha P+Q)(X-1) =$ $X(\alpha P(X) + Q(X) - \alpha P(X - 1) - Q(X - 1)) = \alpha X(P(X) - P(X - 1)) + X(Q(X) - Q(X - 1)) = \alpha f(P) + f(Q)$ Donc f est linéaire.

Soit $P \in E = \mathbb{R}_n[X]$. On a alors $P(X) - P(X-1) \in \mathbb{R}_{n-1}[X]$, car les termes de degré n se simplifient. Puis $f(P) \in E$ par degré d'un produit de polynômes.

Finalement, f est bien un endomorphisme.

Final energy, f est then the endomorphisme.

2. Soit $j \in [0, n]$. $f(X^j) = X(X^j - (X - 1)^j) = X(X^j - \sum_{i=0}^j \binom{j}{i}(-1)^{j-i}X^i) = X(-\sum_{i=0}^{j-1} \binom{j}{i}(-1)^{j-i}X^i) = \sum_{i=0}^{j-1} \binom{j}{i}(-1)^{j-i-1}X^{i+1} = \sum_{k=1}^j \binom{j}{k-1}(-1)^{j-k}X^k$ en faisant un changement d'indice.

La matrice de f est donc triangulaire supérieure : $A = \begin{pmatrix} 0 & 1 & * \\ & \ddots & \\ & & j \\ & & & \end{pmatrix}$ avec $a_{k,j} = (-1)^{j-k} \binom{j}{k-1}$.

- 3. Noyau: Puisque A est triangulaire, que le premier terme diagonal est nul et que les autres termes diagonaux sont tous non nuls, ker(f) est de dimension 1, de base (1). $Rang: D'après le théorème du rang, <math>rg(f) = dim(E) - dim \ker(f) = (n+1) - 1 = n.$ Image: Par définition de f, on a; $\forall P \in E, f(P) = X \cdot (...) \in X\mathbb{R}_{n-1}[X]$, donc $Im(f) \subset X\mathbb{R}_{n-1}[X]$. Par argument d'inclusion-dimension, on conclut $\operatorname{Im}(f) = \operatorname{Vect}(X, X^2, X^3, \dots, X^n)$.
- 4. Le réel λ est une valeur propre si et seulement s'il existe $P \neq 0$ tel que $f(P) = \lambda P$ si et seulement s'il existe P non nul tel que $(f - \lambda I d_E)(P) = 0$ si et seulement si $\ker(f - \lambda I d_E) \neq \{0\}$ ssi $\ker(A - \lambda I_{n+1}) \neq \{0\}$ ssi λ est une valeur de la diagonale de A.
- 5. La matrice de $f \lambda Id_E$ est triangulaire supérieure. Son déterminant est égal au produit des éléments diagonaux. Les valeurs propres sont donc les valeurs sur la diagonalen, c'est à dire $:0,1,\ldots,n$.