Exercice MPSI:

Soient a et b deux réels, a < b. On considère la fonction $f:[a,b] \longrightarrow [a,b]$ supposée continue et une suite récurrente $(u_n)_n$ définie par $: u_0 \in [a,b]$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$.

- 1. On suppose ici que f est croissante. Montrer que $(u_n)_n$ est monotone et en déduire sa convergence vers une solution de l'équation f(x) = x.
- **2.** Application. Calculer la limite de la suite définie par : $u_0 = 4$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{4u_n + 5}{u_n + 3}$.
- 3. On suppose maintenant que f est décroissante. Montrer que les suites $(u_{2n})_n$ et $(u_{2n+1})_n$ sont monotones et convergentes.
- **4.** Application. Soit $u_0 = \frac{1}{2}$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = (1 u_n)^2$. Calculer les limites des suites $(u_{2n})_n$ et $(u_{2n+1})_n$.

Exercice : Norme p de Minkowski

Soient p > 1 et q > 1 tel que 1/p + 1/q = 1.

- **1.** a. Soit $y \in \mathbb{R}_+^*$ et $\Delta_y : x \mapsto \frac{\ln x \ln y}{x y}$. Montrer que Δ_y est décroissante sur $\mathbb{R}_+^* \setminus \{y\}$.
 - **b.** En déduire que pour tout x < y réels strictement positifs et tout $t \in [0,1]$,

$$\ln(tx + (1-t)y) \ge t \ln(x) + (1-t) \ln(y).$$

(on dit que la fonction ln est concave)

c. En déduire que pour $a, b \ge 0$,

$$ab \leqslant \frac{1}{p}a^p + \frac{1}{q}b^q$$

Pour $x = (x_1, \dots, x_n) \in \mathbb{K}^n$ et $y = (y_1, \dots, y_n) \in \mathbb{K}^n$, on pose :

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} \text{ et } ||y||_q = \left(\sum_{i=1}^n |y_i|^q\right)^{1/q}$$

2. Soit x et y dans \mathbb{K}^n non nuls. Établir

$$\frac{|x_i y_i|}{\|x\|_p \|y\|_q} \leqslant \frac{1}{p} \frac{|x_i|^p}{\|x\|_p^p} + \frac{1}{q} \frac{|y_i|^q}{\|y\|_q^q}$$

et en déduire

$$\sum_{i=1}^{n} |x_i y_i| \leqslant ||x||_p ||y||_q$$

3. En écrivant

$$(|x_i| + |y_i|)^p = |x_i| (|x_i| + |y_i|)^{p-1} + |y_i| (|x_i| + |y_i|)^{p-1}$$

justifier

$$||x + y||_p \le ||x||_p + ||y||_p$$

4. Conclure que $\|.\|_p$ définit une norme sur \mathbb{K}^n .

ELEMENTS DE CORRECTION

Exercice MPSI:

1. On distingue les cas:

ler cas : si $u_1 \leq u_0$, alors comme f est croissante, $f(u_1) \leq f(u_0)$, c'est à dire $u_2 \leq u_1$. Par récurrence, on démontre que la propriété $u_{n+1} \leq u_n$ est vraie pour tout $n \in \mathbb{N}$. La suite est alors décroissante. Comme elle est minorée par a, elle converge vers un réel x. De plus, comme f est continue en x, si $u_n \longrightarrow x$, alors $u_{n+1} = f(u_n) \longrightarrow f(x)$. Par unicité de la limite, on en déduit que x est un point fixe de f.

2ème cas : si $u_1 \ge u_0$, on montre de manière similaire que (u_n) est croissante. Comme elle est majorée par b elle converge vers $x \in [a, b]$. On vérifie aussi que f(x) = x...

2. La fonction $x \mapsto \frac{4x+5}{x+3}$ est croissante sur [0,5] et on vérifie que $f([0,5]) \subset [0,5]$ qui est donc un intervalle stable par f et permet de définir la suite récurrente initialisée à $u_0 = 4$.

D'après ce qui précède, la suite (u_n) converge vers un point fixe de f dans [0,5]. On résout f(x) = x sur [0,5]: c'est à dire $\frac{4x+5}{x+3} = x \Leftrightarrow x^2 - x - 5 = 0$.

On trouve deux candidats, dont un qui est négatif donc hors de l'intervalle. Finalement, $x = \frac{1 + \sqrt{21}}{2}$.

3. La fonction f est décroissante. Donc la fonction $f \circ f$ est croissante. La suite (u_{2n}) est récurrente en posant $u_0 \in [a,b]$ et $u_{2(n+1)} = u_{2n+2} = f \circ f(u_{2n})$.

Les résultats de la question 1 s'appliquent donc et la suite (u_{2n}) est monotone et converge vers un réel x tel que $x = f \circ f(x)$.

On obtient le même résultat pour (u_{2n+1}) .

4. Soit $f: x \mapsto (1-x)^2$ définie sur [0,1] (qui est un intervalle stable contenant 1/2).

Alors $f \circ f(x) = (1 - (1 - x)^2)^2 = (2x - x^2)^2 = x^2(2 - x)^2$.

Les points fixes de $f \circ f$ sur [0,1] vérifient $x^2(2-x)^2 = x$. Le réel 0 est solution. Si $x \neq 0$, on se ramène à $(x-1)(x^2-3x+1)=0$, c'est à dire x=1, ou $x=\frac{3-\sqrt{5}}{2}$ (l'autre solution $\frac{2+\sqrt{5}}{2}$ est en dehors de l'intervalle [0,1]).

 $u_0 = 1/4$ et $u_1 = (1 - 1/4)^2 = 9/16$. On remarque que $1/4 < \frac{3 - \sqrt{5}}{2} < 9/16$.

Puis $u_2 = (1 - 9/16)^2 = \frac{7^2}{16^2} < 1/4$ donc la suite (u_{2n}) est décroissante et converge vers un point fixe de $f \circ f$ inférieur à 1/4. Il ne reste plus que 0 comme candidat possible. Donc (u_{2n}) converge vers 0.

Enfin, $u_3 = ... > u_1 = 9/16$. Donc la suite (u_{2n+1}) est croissante et converge vers une limite qui est supérieure à u_1 . Il ne reste que 1 comme candidat possible. Donc (u_{2n+1}) converge vers 1.

Finalement, (u_n) est divergente.

Norme de Minkowski:

1. a. La dérivée (par rapport à x) de Δ_y est $\Delta_y': x \mapsto \frac{(x-y)/x - \ln x + \ln y}{(x-y)^2} = \frac{1 - y/x + \ln(y/x)}{(x-y)^2}$ qui est du signe de $1 - y/x + \ln(y/x)$.

On pose X=y/x. Cela revient à étudier le signe de l'expression $\phi(X)=1-X+\ln X$ pour X>0. On peut dériver à nouveau et étudier les variations de ϕ et retrouver que ϕ est croissante pour $X\leqslant 1$ puis décroissante pour $X\geqslant 1$ avec un maximum égal à $\phi(1)=0$, ce qui se traduit par un résultat à connaître : la droite d'équation y=x-1 est une tangente située au dessus de la courbe de la fonction logarithme népérien.

Finalement, la dérivée Δ'_{y} est négative donc la fonction Δ_{y} est décroissante sur $\mathbb{R}_{+}^{*}\setminus\{y\}$.

b. Soit x < y. On remarque que pour $t \in]0,1[,tx+(1-t)y \in [x,y]$. Donc en particulier : $x \le tx+(1-t)y$. En utilisant la question précédente : $\Delta_y(x) \ge \Delta_y(tx+(1-t)y)$. Alors on obtient successivement :

$$\frac{\ln x - \ln y}{x - y} \geqslant \frac{\ln(tx + (1 - t)y) - \ln y}{tx + (1 - t)y - y}$$
$$\frac{\ln x - \ln y}{x - y} \geqslant \frac{\ln(tx + (1 - t)y) - \ln y}{t(x - y)}$$

En multipliant par
$$t(x-y) < 0$$
, $t(\ln x - \ln y) \le \ln(tx + (1-t)y) - \ln y$ soit exactement : $t \ln x + (1-t) \ln y \le \ln(tx + (1-t)y)$

- c. En posant $x=a^p, y=b^q$ et t=1/p, donc 1-t=1/q, on obtient : $p\ln a^p+1/q\ln b^q\leqslant \ln(a^p/p+b^q/q)$ et en passant à l'exponentielle croissante sur $\mathbb R$, on obtient : $\exp 1/p\ln a^p+1/q\ln b^q\leqslant a^p/p+b^q/q$. Or $\exp(1/p\ln a^p+1/q\ln b^q)=\exp(\ln a+\ln b)=ab$ d'où le résultat.
- **2.** On applique ce résultat en posant $a = \frac{|x_i|}{\|x\|_p}$ et $b = \frac{|y_i|}{\|y\|_q}$ et on obtient :

$$\frac{\left\|x_{i}y_{i}\right\|}{\left\|x\right\|_{p}\left\|y\right\|_{q}}\leqslant\frac{1}{p}\frac{\left|x_{i}\right|^{p}}{\left\|x\right\|_{p}^{p}}+\frac{1}{q}\frac{\left|y_{i}\right|^{q}}{\left\|y\right\|_{q}^{q}}$$

En sommant,

$$\sum_{i=1}^{n} \frac{|x_i y_i|}{\|x\|_p \|y\|_q} \leqslant 1/p + 1/q = 1$$

puis

$$\sum_{i=1}^{n}|x_{i}y_{i}|\leqslant\|x\|_{p}\,\|y\|_{q}$$
 (appelée inégalité de Hölder).

3. Commençons par remarquer que $||x+y||_p = \left(\sum_{i=1}^n |x_i+y_i|^p\right)^{1/p} \leqslant \left(\sum_{i=1}^n (|x_i|+|y_i|)^p\right)^{1/p}$ par inégalité triangulaire du module.

Alors
$$\sum_{i=1}^{n} (|x_i| + |y_i|)^p \le \sum_{i=1}^{n} |x_i| (|x_i| + |y_i|)^{p-1} + \sum_{i=1}^{n} |y_i| (|x_i| + |y_i|)^{p-1}$$

$$\text{Et} \sum_{i=1}^{n} (|x_i| + |y_i|)^p \leqslant ||x||_p \left(\sum_{i=1}^{n} (|x_i| + |y_i|)^{(p-1)q} \right)^{1/q} + ||y||_p \left(\sum_{i=1}^{n} (|x_i| + |y_i|)^{(p-1)q} \right)^{1/q} \text{d'après l'inégalité}$$
de Hölder

On remarque alors que (p-1)q=p(1-1/p)q=pq/q=p et on rappelle que 1/q=1-1/p... Alors :

$$\sum_{i=1}^{n} (|x_i| + |y_i|)^p \leqslant (||x||_p + ||y||_p) \left(\sum_{i=1}^{n} (|x_i| + |y_i|)^p \right)^{1-1/p}.$$

Alors en supposant que $\left(\sum_{i=1}^n (|x_i|+|y_i|)^p\right) \neq 0$, on arrive à :

$$\frac{\left(\sum_{i=1}^{n} (|x_i| + |y_i|)^p\right)}{\left(\sum_{i=1}^{n} (|x_i| + |y_i|)^p\right)^{1-1/p}} \leqslant ||x||_p + ||y||_p$$

Et finalement dans tous les cas :

$$||x + y||_p \le \left(\sum_{i=1}^n (|x_i| + |y_i|)^p\right)^{1/p} \le ||x||_p + ||y||_p$$