Exercice MPSI:

Soient $f: E \mapsto F$ et $g: F \mapsto G$ deux applications.

- 1. Montrer que si $g \circ f$ est injective et f surjective, alors g est injective.
- **2.** Montrer que si $g \circ f$ est surjective et g est injective, alors f est surjective.

Exercice 1:

On note \star la loi interne dans $G = \mathbb{C} \times \mathbb{R}$ définie, pour tous $(z,t), (z',t') \in G$ par :

$$(z,t)\star(z',t')='z+z',t+t'+Im(\overline{z}z')).$$

Montrer que (G, \star) est un groupe. Est-il commutatif?

Exercice 2:

Soient (G, \cdot) un groupe, e son neutre, $a, b \in G$ tels que $ba = ab^2$ et $ab = ba^2$. Montrer que a = b = eExercice 3:

Montrer que les groupes $(\mathbb{Z}, +)$ et $(\mathbb{Z}^2, +)$ ne sont pas isomorphes.

Exercices en temps libre: Semaine 0

Exercice MPSI:

Soient $f: E \mapsto F$ et $g: F \mapsto G$ deux applications.

- **1.** Montrer que si $g \circ f$ est injective et f surjective, alors g est injective.
- **2.** Montrer que si $g \circ f$ est surjective et g est injective, alors f est surjective.

Exercice 1:

On note \star la loi interne dans $G = \mathbb{C} \times \mathbb{R}$ définie, pour tous $(z,t), (z',t') \in G$ par :

$$(z,t) \star (z',t') = 'z + z', t + t' + Im(\overline{z}z').$$

Montrer que (G, \star) est un groupe. Est-il commutatif?

Exercice 2:

Soient (G,\cdot) un groupe, e son neutre, $a,b\in G$ tels que $ba=ab^2$ et $ab=ba^2$. Montrer que a=b=e **Exercice 3**:

Montrer que les groupes $(\mathbb{Z}, +)$ et $(\mathbb{Z}^2, +)$ ne sont pas isomorphes.

Exercices en temps libre : Semaine 0

Exercice MPSI:

Soient $f: E \mapsto F$ et $g: F \mapsto G$ deux applications.

- 1. Montrer que si $g \circ f$ est injective et f surjective, alors g est injective.
- **2.** Montrer que si $g \circ f$ est surjective et g est injective, alors f est surjective.

Exercice 1:

On note \star la loi interne dans $G = \mathbb{C} \times \mathbb{R}$ définie, pour tous $(z,t), (z',t') \in G$ par :

$$(z,t)\star(z',t')='z+z',t+t'+Im(\overline{z}z').$$

Montrer que (G, \star) est un groupe. Est-il commutatif?

Exercice 2:

Soient (G,\cdot) un groupe, e son neutre, $a,b\in G$ tels que $ba=ab^2$ et $ab=ba^2$. Montrer que a=b=e

Exercice 3:

Montrer que les groupes $(\mathbb{Z},+)$ et $(\mathbb{Z}^2,+)$ ne sont pas isomorphes.