Un peu de calculs

- 1. Soit $I = \int_{-2}^{0} \frac{x+2}{\sqrt{x^2+4x+8}} dx$.
 - \mathbf{a} . Justifier l'existence de I.
 - **b.** Déterminer des réels a, b, c tels que $x^2 + 4x + 8 = a((bx + c)^2 + 1)$.
 - **c.** Après justifications, effectuer le changement de variables $\frac{x}{2} + 1 = \tan t$.
 - **d.** Calculer I.
- **2.** Déterminer la nature de la série de terme général $u_n = \frac{(-1)^n}{\sqrt{n} + (-1)^n}$.

On évitera de faire un équivalent, mais on passera plutôt par un développement limité de $\frac{1}{1+x}$.

Exercice

Soit I = [0,1] et $E = \mathcal{C}^0(I,\mathbb{R})$ l'espace vectoriel des fonctions continues sur I à valeurs dans \mathbb{R} .

On munit E de la norme $||.||_{\infty}$ définie pour $f \in E$ par $||f||_{\infty} = \sup_{x \in I} \{|f(x)|\}$.

Soit $f \in E$. On pose $\forall x \in I, g(x) = \exp(-x) \int_0^x \exp(t) f(t) dt$.

- 1. a. Démontrer que l'application $\phi: f \mapsto \phi(f) = g$ est un endomorphisme de E.
 - **b.** Calculer $\exp(-x) \int_0^x \exp(t) dt$.
 - **c.** En déduire que l'application ϕ est continue de $(E,||.||_{\infty})$ dans $(E,||.||_{\infty})$.
- **2.** On considère la suite de fonctions définie par $f_0 = 1$ et $\forall n \in \mathbb{N}, f_{n+1} = \phi(f_n)$.
 - **a.** Montrer que pour tout $x \in \mathbb{R}$, $|f_n(x)| \leq (1 e^{-1})^n$.
 - b. En déduire que la série $\sum f_n(x)$ est absolument convergente.
 - **c.** Démontrer que pour tout $n \in \mathbb{N}$, f_{n+1} est dérivable sur [0,1] et exprimer $f'_{n+1}(x)$ en fonction de $f_n(x)$ et de $f_{n+1}(x)$.
 - **d.** En déduire que la série $\sum f'_n(x)$ est convergente et calculer sa somme.

Problème 1:

Dans tout le problème, les suites considérées sont à valeurs réelles.

Partie A

On considère la suite définie pour tout entier naturel $n \ge 1$ par

$$a_n = \sum_{k=1}^n \frac{1}{k}.$$

- 1. Démontrer que pour tout entier $n \ge 1$, $a_{2n} a_n \ge \frac{1}{2}$.
- **2.** En déduire la nature de la suite (a_n) .
- **3.** Démontrer que $a_n 1 \leq \ln n \leq a_n$ pour $n \geq 1$.
- **4.** En déduire un équivalent de a_n au voisinage de $+\infty$.
- **5.** On pose pour $n \ge 1$, $b_n = a_n \ln n$. Montrer que la suite (b_n) est convergente. On note γ sa limite.
- **6.** Donner un équivalent de $a_n \ln n \gamma$ lorsque n tend vers $+\infty$.

Partie B

À toute suite (u_n) , on associe la suite (v_n) définie par

$$\forall n \geqslant 1, v_n = \frac{1}{n} \sum_{k=1}^n u_k.$$

On dit que la suite (u_n) converge au sens de Cesàro si la suite (v_n) converge.

- 1. Soit (u_n) une suite de limite nulle et $\varepsilon > 0$.
 - **a.** Montrer qu'il existe $n_0 \in \mathbb{N}^*$ tel que

$$\forall n \geqslant n_0, \frac{1}{n} \left(\sum_{k=1}^{n_0} u_k \right) - \varepsilon \leqslant v_n \leqslant \frac{1}{n} \left(\sum_{k=1}^{n_0} u_k \right) + \varepsilon.$$

- **b.** En déduire que la suite (v_n) converge vers 0.
- c. Énoncer puis démontrer la généralisation du résultat précédent au cas où (u_n) converge vers $\ell \neq 0$.
- **2.** On considère la suite définie par $x_1 = 1$ et $\forall n \in \mathbb{N}^*, x_{n+1} = \frac{x_n(1+x_n)}{1+2x_n}$.
 - **a.** Montrer que $\forall n \geq 2, 0 < x_n < 1$.
 - **b.** Montrer que la suite (x_n) est décroissante.
 - **c.** La suite (x_n) est-elle convergente? Si oui, déterminer sa limite.
 - **d.** Vérifier que pour tout $n \in \mathbb{N}^*$,

$$\frac{1}{x_{n+1}} - \frac{1}{x_n} = \frac{1}{1+x_n}.$$

- **e.** Pour tout $n \ge 1$, on pose $u_n = \frac{1}{x_{n+1}} \frac{1}{x_n}$ et $v_n = \frac{1}{n} \sum_{k=1}^n u_k$. Montrer que (u_n) converge vers 1.
- **f.** Exprimer v_n en fonction de x_{n+1} et x_n et en déduire un équivalent de x_n au voisinage de $+\infty$.
- 3. On suppose qu'une suite (w_n) est telle que $(w_{n+1}-w_n)$ est convergente vers un nombre ℓ .
 - **a.** Montrer que la suite $\left(\frac{w_n}{n}\right)$ converge et préciser sa limite.
 - **b.** Étudier la nature de la suite (w_n) lorsque $\ell \neq 0$.
 - **c.** Que peut-on dire dans le cas où $\ell = 0$?
- **4.** Soit $\alpha \in \mathbb{R}$. Dans cette question, on pose pour $n \ge 1$, $u_n = \sin n\alpha$ et $v_n = \frac{1}{n} \sum_{k=1}^n u_k$.

2

a. Étudier la nature des suite (u_n) et (v_n) lorsque $\alpha \equiv 0[\pi]$.

- **b.** Pour $n \ge 1$, on pose $c_n = \cos n\alpha$. Exprimer $u_{n+2} u_n$ en fonction de c_{n+1} et $u_{n+2} + u_n$ en fonction de u_{n+1} .
- **c.** On suppose dans cette question que $\alpha \neq 0[\pi]$.
 - i. On fait l'hypothèse que la suite (u_n) converge. Démontrer que la suite (c_n) converge également et préciser les limites de (u_n) et de (c_n) .
 - ii. Conclure quant à la convergente de la suite (u_n) .
 - iii. Montre que la suite (v_n) converge et déterminer sa limite.
- 5. Dans cette question, on suppose que la suite (u_n) est croissante et que la suite (v_n) converge.
 - **a.** Démontrer que pour tout $n \ge 1$, $u_{n+1} \le 2v_{2n} v_n$
 - **b.** Établir la convergence de la suite (u_n) et préciser sa limite.

Problème 2:

Dans tout ce problème, on fixe $d \in \mathbb{N}^*$.

Pour
$$x = (x_1, \dots x_d) \in \mathbb{R}^d$$
, on pose $||x||_2 = \left(\sum_{j=1}^d x_j^2\right)^{1/2}$

On définit $\mathcal{B} = \{x \in \mathbb{R}^d | \|x\|_2 = 1\}.$

Pour $A \in \mathcal{M}_d(\mathbb{K})$, on définit : $|||A||| = \sup_{x \in \mathcal{B}} (||Ax||_2)$.

- 1. Montrer que l'application $A \mapsto |||A|||$ est bien définie de $\mathcal{M}_d(\mathbb{R})$ dans \mathbb{R}_+ et que cette application est une norme sur $\mathcal{M}_d(\mathbb{R})$.
- **2.** Soit A une matrice symétrique dans $\mathcal{M}_d(\mathbb{R})$.
 - a. En utilisant une matrice orthogonale adaptée, montrer que $||A|| = \sup_{\lambda \in Sp(A)} |\lambda|$ où Sp(A) désigne l'ensemble des valeurs propres de A.
 - **b.** En déduire que $|Tr(A)| \leq d||A||$.
- **3.** Soient A et B deux matrices de $\mathcal{M}_d(\mathbb{R})$.
 - **a.** Montrer que $|||AB||| \le |||A||| |||B|||$.
 - **b.** Montrer que la série $\sum \frac{A^n}{n!}$ est convergente dans $\mathcal{M}_d(\mathbb{R})$. On note $\exp(A)$ sa somme.
 - **c.** Montrer que si A et B commutent, alors $\exp(A+B) = \exp(A)\exp(B)$.

4. On pose
$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $J = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $K = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ et $L = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$.

- a. Calculer les exponentielles de I, J, K et L.
- **b.** Pour $\theta \in \mathbb{R}$, on pose $M = \cos(\theta)J + \sin(\theta)K$. Montrer que $M^2 = I$.
- **c.** En déduire que pour tout $s \in \mathbb{R}$, $\exp(-sM) = \operatorname{ch}(s)I \operatorname{sh}(s)M$ et que $Tr(\exp(-sM)) = 2\operatorname{ch}(s)$.
- **5.** Soit A un élément de $\mathcal{M}_d(\mathbb{R})$. Pour tout $x \in \mathbb{R}^d$, on considère la fonction $\phi_x : t \mapsto \exp(-tA)x$ définie sur \mathbb{R} .

3

Montrer que pour tout $x \in \mathbb{R}^d$, ϕ_x est une fonction $C^1(\mathbb{R}, \mathbb{R}^d)$ et qu'elle est l'unique solution de l'équation différentielle y'(t) + Ay(t) = 0 telle que y(0) = x.