Éléments de correction

PROBLEME 1

Partie 1 : étude d'un cas déjà vu en cours...

- **1. a. Existence :** si $x \neq 0_E$ et (x, f(x)) liée, alors f(x) est proportionnel à x. Il existe donc au moins un λ_x convenable.
 - **Unicité :** si $\lambda_x^{(1)}$ et $\lambda_x^{(2)}$ conviennent, alors $f(x) f(x) = (\lambda_x^{(1)} \lambda_x^{(2)})x = 0_E$. Comme x est supposé non nul, $\lambda_x^{(1)} = \lambda_x^{(2)}$.
 - **b.** Comme x est non nul, iI existe α tel que $y = \alpha x$. Alors $f(y) = \lambda_y y = \alpha f(x) = \lambda_x \alpha x = \lambda_x y$. Par unicité de la question qui précède, $\lambda_y = \lambda_x$.
 - c. Il existe trois scalaires tels que $f(x+y) = \lambda_{x+y}(x+y), f(x) = \lambda_x x$ et $f(y) = \lambda_y y$. Par ailleurs, $f(x)+f(y) = \lambda_x x + \lambda_y y$. En écrivant f(x+y) = f(x)+f(y), on obtient, $\lambda_{x+y}(x+y) = \lambda_x x + \lambda_y y$, donc $(\lambda_{x+y} \lambda_x)x + (\lambda_{x+y} \lambda_y)y = 0_E$. Comme la famille (x,y) est libre, $\lambda_{x+y} = \lambda_x + \lambda_y$.
 - **d.** On avait supposé que $\forall x \in E, \exists \lambda_x \in \mathbb{C}, f(x) = \lambda_x x$. Les questions qui précèdent permettent de montrer que λ_x est en réalité indépendant de x. Donc $\exists \lambda \in \mathbb{C}, \forall x \in E, f(x) = \lambda x$. Donc f est une homothétie et $f = \lambda i d_E$. La famille (id_E, f) est effectivement une famille liée.

Quelques applications

- **2.** Soit $x \in E \setminus \{0\}$. Soit $D_x = Vect(x)$. D_x est une droite vectorielle. Donc $f(D_x) \subset D_x$, c'est à dire $f(x) \in D_x$, donc $\exists \lambda_x \in \mathbb{C}, f(x) = \lambda_x x$.
 - D'après le paragraphe précédent, f est donc une homothétie.
- **3.** Soit $x \in E \setminus \{0\}$. Soit $D_x = Vect(x)$. Soient y, z tels que (x, y, z) forme une famille libre. C'est possible car $dim(E) \geq 3$.
 - Alors f laisse stable le plan Vect(x,y) et le plan Vect(x,z). Donc $f(D_x) \subset Vect(x,y) \cap Vect(x,z) = D_x$ car l'intersection des deux plans est égale à la droite D_x car x,y,z est libre.
 - D'après la question qui précède, f est une homothétie.
- **4. a.** Par contraposée, si f n'est pas une homothétie, il existe x_0 tel que la famille $(x_0, f(x_0))$ ne soit pas liée, donc libre.
 - b. C'est le théorème de la base incomplète en dimension finie. Toute famille libre peut être complétée en une base de l'espace.
 - c. On rappelle que $F = ker(s id_E)$ et que $G = ker(s + id_E)$. Un dessin est bienvenu si vous avez le moindre doute.
 - D'une part, $s \circ f(x_0) = -f(x_0)$ car $f(x_0) \in G = ker(s+id_E)$. D'autre part, $f(s(x_0)) = f(x_0)$ car $x_0 \in F = ker(s-id_E)$. Ainsi, $s \circ f(x_0) = -f \circ s(x_0) \neq 0_E$ car $f(x_0 \neq 0_E)$ car $f(x_0 \neq$
 - Ainsi, $s \circ f \neq f \circ s$.
- 5. Encore un résultat vu en TD. Nous l'avions fait avec une projection : voilà la variante avec une symétrie. Toujours par contraposée, si f n'est pas une homothétie, alors il existe une famille $(x_0, f(x_0))$ libre. On peut donc construire une symétrie s qui ne commute pas avec f. Donc f n'appartient pas au centre de l'anneau $\mathcal{L}(E)$.
- 6. On rappelle qu'il est possible de démontrer ce résultat à l'aide des matrices élémentaires $E_{i,j}$. Mais ici, en considérant l'endomorphisme canoniquement associé à A, la traduction géométrique de cette équivalence est : f est une homothétie si et seulement si $f \circ g = g \circ f$ pour tout $g \in \mathcal{L}(E)$.

- On a montré le sens réciproque dans ce qui précède. Le sens direct n'est pas difficile : si f est une homothétie, alors $\exists l \in \mathbb{C}, \forall x \in E, f(x) = \lambda x$ et donc pour tout endomorphisme g de E, $g(f(x)) = g(\lambda x) = \lambda g(x) = f(g(x))$.
- 7. On va montrer que si f stabilise tous les hyperplans, $\forall x \in E, (x, f(x))$ est liée. Par l'absurde, s'il existe x_0 tel que $(x_0, f(x_0))$ est libre, on peut compléter la famille en une base $(x_0, f(x_0), e_3, \dots e_n)$. Alors l'hyperplan $Vect(x_0, e_3, \dots e_n)$ n'est pas stable par f... Contradiction et résultat!

Partie 2 : étude du cas général

- 1. a. L'ensemble $A_x = \{k \in \mathbb{N}^* | (x, f(x), \dots, f^{k-1}(x)) \text{ est libre.} \}$ est une partie non vide de \mathbb{N}^* et majorée par n par statut de n. Donc A_x admet un plus grand élément noté n_x . Pour $k \leq n_x$, la famille $(x, f(x), \dots, f^{k-1}(x))$ est libre car c'est une sous-famille de $(x, f(x), \dots, f^{n_x-1}(x))$ qui est libre par construction. Par contre, si $k > n_x$, la famille $(x, f(x), \dots, f^k(x))$ est liée car c'est une sur-famille d'une famille liée. Ainsi, un tel n_x existe et est unique.
 - **b.** La famille $(x, f(x), \ldots, f^{n_x-1}(x))$ est libre et la famille $(x, f(x), \ldots, f^{n_x}(x))$ est liée. Donc $f^{n_x}(x)$ est combinaison linéaire des $(x, f(x), \ldots, f^{n_x-1}(x))$, donc appartient à H. Donc $f(H) \subset H$.
- **2. a.** L'ensemble $A' = \{n_x | x \in E \setminus \{0_E\}\}$ est une partie non vide et majoré par n de \mathbb{N} . Il admet donc un maximum noté p qui est inférieur ou égal à n. Ce maximum est atteint en au moins un x_0 .
 - b. La famille $(x_0, f(x_0), \ldots, f^{p-1}(x_0))$ est libre et la famille $(x_0, f(x_0), \ldots, f^p(x_0))$ est liée. Donc $(x_0, f(x_0), \ldots, f^{p-1}(x_0))$ est une base de $F = Vect((x_0, f(x_0), \ldots, f^{p-1}(x_0))) = Vect((x_0, f(x_0), \ldots, f^p(x_0)))$. Ainsi, le vecteur $-f^p(x_0)$ se décompose de manière unique sur cette base, ce qui fournit l'existence et l'unicité de coefficients a_0, \ldots, a_p tels que $a_p = 1$ et $\sum_{k=0}^p a_k f^k(x_0) = 0_E$. On pose alors $P = \sum a_k X^k$ qui est unitaire par construction. Si Q est un polynôme non nul de degré inférieur ou égal à p 1, $Q(f)(x_0) = \sum b_k f^k(x_0)$ est une combinaison linéaire des vecteurs de la famille libre $(x_0, f(x_0), \ldots, f^{p-1}(x_0))$ avec des coefficients non tous nuls. Par contraposée de la définition d'une famille libre, cette combinaison linéaire n'est pas nulle. Donc $Q(f)(x_0) \neq 0_E$.
- 3. a. Nous avons déjà montré plusieurs fois que $f^p(x_0) \in Vect((x_0, f(x_0), \dots, f^{p-1}(x_0)))$. Par ailleurs, $f^{n_u}(u) \in Vect((u, f(u), \dots, f^{n_u-1}(u)))$. Donc $f^{n_u+1}(u) \in Vect(f(u), f^2(u), \dots, f^{n_u}(u)) \subset Vect(u, f(u), \dots, f^{n_u-1}(u))$. Par récurrence, on montrerait que pour tout $k \geq n_u$, $f^k(u) \in Vect(u, f(u), \dots, f^{n_u-1}(u))$. Ainsi, $f^p(u) \in Vect(u, f(u), \dots, f^{p-1}(u))$ car $p \geq n_u$. F_u est donc stable par f.
 - **b.** La famille $(x_0, f(x_0), \ldots, f^{p-1}(x_0))$ est libre. Donc $dim(F_u) \ge p$. Mais la famille $(x_0, f(x_0), \ldots, f^{p-1}(x_0), u, f(u), \ldots)$ est de cardinal 2p, donc $dim(F_u) \le 2p$.
 - c. Pour définir une forme linéaire sur F_u , il suffit de définir ses valeurs sur une base de F_u . Or la famille $(x_0, f(x_0), \dots, f^{p-1}(x_0))$ est libre. On la complète en une base β de F_u . Soit $j \in \{0, \dots, p-1\}$. Il existe une forme linéaire φ_j telle que $\varphi(f^j(x_0)) = 1$ et $\varphi(e) = 0$ pour tout autre vecteur e de β . La famille $(\varphi_j)_{j \in \{0,\dots,p-1\}}$ convient.
- 4. $\varphi_j(f^i(v_\lambda)) = \varphi_j(f^i(x_0 + \lambda u)) = \delta_i^j + \lambda \varphi_j(f^i(u))$. Si on note M(x) la matrice composée des complexes $\varphi_j(f^i(x))$ pour $(i,j) \in \{0,\ldots,p-1\}$, on remarque que $\Delta(\lambda) = \det(I_n + \lambda M(u))$. Par la formule $\det(A) = \sum_{\sigma \in S_p} \varepsilon(\sigma) \prod_{i=1}^p a_{i,\sigma(i)}$, on obtient que chaque produit $\prod_{i=1}^p a_{i,\sigma(i)}$ est le produit d'au plus p polynômes de degré inférieur ou égal à 1 en λ . Donc $\Delta(\lambda)$ est bien la somme de polynômes de degrés inférieurs ou égaux à λ , donc un polynôme de $\mathbb{C}_p[X]$ en λ . De plus, $\Delta(0) = \det(I_p) = 1$.

- 5. On applique la question 1.2 de cette partie au vecteur v_{λ} .
- 6. a. Les φ_i sont linéaires. Il suffit de composer par φ_i l'égalité de la question qui précède.
 - **b.** Si $\lambda \notin Z$, $\Delta(\lambda) \neq 0$. Notons U la matrice colonne $\begin{pmatrix} \alpha_0(\lambda) \\ \vdots \\ \alpha_{p-1}(\lambda) \end{pmatrix}$ et $V = \begin{pmatrix} \varphi_0(f^p(v_\lambda)) \\ \vdots \\ \varphi_{p-1}(f^p(v_\lambda)) \end{pmatrix}$.

Alors BU = V. De plus, $det(B) = \Delta(\lambda) \neq 0$. Donc B est inversible et $U = B^{-1}V = \frac{1}{det(B)} com(B) \cdot V$. Les coefficients de B sont les $\delta_i^j + \lambda \varphi_j(f^i(u))$ qui sont des polynômes en λ . Donc ceux de sa comatrice le sont également.

Donc les coefficients de U qui sont les $\alpha_k(\lambda)$ sont bien des fractions rationnelles en λ .

- 7. a. Soit a_0, \ldots, a_{p-1} complexes tels que $\sum_{k=0}^{p-1} a_k f^k(v_\lambda) = 0$. Soit $j \in [0, p-1]$. Alors en composant par φ_j qui est linéaire, $\sum_{k=0}^{p-1} a_k \varphi_j(f^k(v_\lambda)) = a_j = 0$. La famille est donc libre.
 - **b.** Le polynôme $Q_j = \prod_{k=0}^{p-1} (f \beta_k(\lambda)id_E)$ est de degré p-1. D'après la question 2.2. de cette partie, $Q_j(f)(v_\lambda) \neq 0_E$.
 - c. $P_{\lambda}(f)(v_{\lambda}) = f^{p}(v_{\lambda}) \sum_{k=0}^{p-1} \alpha_{k}(\lambda) f^{k}(v_{\lambda}) = 0_{E}$ d'après la définition des α_{k} . Or $P_{\lambda}(f)(v_{\lambda}) = \prod_{k=0}^{p-1} ((f - \beta_{k}(\lambda)id_{E})(v_{\lambda}) = ((f - \beta_{j}(\lambda)id_{E}) \circ Q_{j}(f)(v_{\lambda}) = (f - \beta_{j}(\lambda)id_{E})(\circ Q_{j}(f)(v_{\lambda}))$. Comme O_j $(f)(v_{\lambda} \neq 0_{E}, ker(f - \beta_{j}(\lambda)id_{E}) \neq 0_{E}, donc \beta_{j}$ est une valeur propre de f admettant pour vecteur propre Q_j $(f)(v_{\lambda} \in F_{x_{0}})$.
- 8. Le spectre d'un endomorphisme en dimension finie est une partie fini de \mathbb{C} , donc bornée.
- 9. β_j est à valeur dans le spectre de $f_{F_{x_0}}$, donc bornée par M_j .
- **10.** Notons $M = \max(M_j : j \in \{0, \dots, p-1\})$. Alors $|\alpha_j| \leq M^p$
- 11. α_j est une fraction rationnelle bornée sur $\mathbb{C} \setminus Z$. Si $\alpha_j = \frac{R}{Q}$ où R et Q sont des polynômes de $\mathbb{C}[X]$

premiers entre eux, il existe une constante M > 0 telle que pour tout $z \in \mathbb{C} \setminus Z$, $\frac{|R(z)|}{|Q(z)|} \leq M$.

L'inégalité est vraie pour $z \notin Z$. Soit alors $z_0 \in Z$. La fonction |R| est continue en z_0 par composition de deux fonctions continues (l'une est une fonction polynomiale, l'autre la fonction module) donc admet une limite finie en z_0 . De même pour la fonction |Q|. Au voisinage de z_0 , l'inégalité est vraie. Par passage à la limite dans les inégalités, l'inégalité est encore vraie en z_0 . Si la fraction admet un pôle en z_0 alors $Q(z_0) = 0$. Comme Q et R sont premiers entre eux, R et Q n'ont pas de racines communes, donc $R(z_0) \neq 0$. Alors par théorème opératoires sur les limites, $\frac{|R|}{|Q|}$ tend vers $+\infty$ et n'est pas bornée au voisinage de z_0 .

Par contraposition, comme $\frac{|R|}{|Q|}$ est bornée, Q n'admet pas de racines dans \mathbb{C} . Par le théorème de d'Alembert-Gauss, Q est donc constant (non nul) et R/Q est donc un polynôme.

Mais alors si ce polynôme α_j n'est pas constant, $|\alpha_j(x)|$ tend vers $+\infty$ lorsque x est réel et tend vers $+\infty$. Donc α_j n'est pas borné. Par contraposition, comme α_j est borné, α_j est constant égal à $\alpha_j(0)$.

Donc $P_{\lambda} = P$. Donc $P(f)(u) = 0_E$ comme demandé. Ainsi, P(f) est l'endomorphisme nul et la famille (id_E, f, \ldots, f^p) est liée, donc a fortiori la famille (id_E, f, \ldots, f^n) .

PROBLEME 2

Stabilité du schéma explicite pour la résolution de l'équation de diffusion

1. On obtient de la relation de récurrence :

$$f_{n+1}(k) = f_n(k) + \frac{\tau}{\delta^2} (f_n(k+1) - 2f_n(k) + f_n(k-1)) = \dots = (1 - 2r)f_n(k) + r(f_n(k+1) + f_n(k-1)).$$

Donc
$$AF_n = (1 - 2r)F_n + rB_qF_n = \dots = F_{n+1} \operatorname{car} f_n(0) = f_n(q+1) = 0.$$

- 2. Par récurrence (ne pas écrire "immédiate" et la rédiger...), $F_n = A^n F_0$ (la suite matricielle est géométrique de raison A)
- 3. Soit λ une valeur propre et $Y = t(y_1, t_2 \dots y_n)$ un vecteur propre associé. Soit $y_{i_0} = \max |y_i|$. Alors $y \neq 0$ car $Y \neq 0_E$.

Comme $B_q Y = \lambda Y$, on a

— Si
$$i_0 = 1$$
, $y_2 = \lambda y_1$ donc $|\lambda| \le \frac{|y_2|}{|y_1|} \le 1$

- Si
$$I_0 = q$$
, $y_{q-1} = \lambda y_q$ donc $|\lambda| \le \frac{|y_{q-1}|}{|y_q|} \le 1$

- Sinon,
$$y_{i_0-1} + y_{i_0+1} = \lambda y_{i_0}$$
 donc $|\lambda| = \frac{|y_{i_0-1} + y_{i_0+1}|}{|y_{i_0}|} \le \frac{|y_{i_0-1}| + |y_{i_0+1}|}{|y_{i_0}|} \le 2 \operatorname{car} |y_{i_0-1}| \le |y_{i_0}|$ et $|y_{i_0+1}| \le |y_{i_0}|$.

Dans tous les cas, $|\lambda| \leq 2$, donc il existe $\theta \in [0, \pi]$, $\lambda = 2 \cos \theta$.

- 4. Vu en TD (formule de récurrence d'un déterminant d'une trigonale et formule trigo).
- 5. Vu en TD (idem zéros distincts de la fonction sinus, degré du polynôme, factorisation complète...)
- 6. Vu en TD.

Si $Y = (y_k)$ est un vecteur propre, les coordonnées vérifient $y_0 + y_2 = \lambda y_1$, $y_{q-1} + y_{q+1} = \lambda y_q$ et $y_{k-1} + y_{k+1} = \lambda y_k$ pour $k \in [1, q-1]$.

La suite (y_k) est donc récurrente linéaire d'ordre 2 d'équation caractéristique $r^2 - \lambda r + 1$ dont le discriminant est $\Delta = -4\sin^2\theta \le 0$. Alors $y_k = A\exp(ik\theta) + B\exp(-ik\theta)$ avec A + B = 0 car $y_0 = 0$.

- 7. Vu en TD.
- 8. La matrice B_q admet q valeurs propres deux à deux distinctes. Son polynôme caractéristique est donc scindé à racines simples, ce qui est une condition suffisante pour que B_q soit diagonalisable. On rappelle au passage que la somme de deux endomorphismes diagonalisables n'est pas forcément diagonalisable! Mais ici, B_q et I_q sont diagonalisables dans une même base! Donc $A = (1-2r)I_q + rB_q$ l'est aussi dans cette base commune.
- **9.** Par double implication :
 - Si la suite (F_n) est bornée quel que soit F_0 , alors pour tout $\lambda \in Sp(A)$, si $F_0 = X_0$ où X_0 est un vecteur propre associé à λ , $F_n = \lambda^n F_0$. X_0 est non nul, donc une de ses coordonnées $x_{0,i}$ est non nulle

Comme toutes les coordonnées de F_n sont bornées, $(\lambda^n x_{0,i})$ est une suite réelle bornée avec $x_{0,i} \neq 0$. Donc $|\lambda| \leq 1$.

- Réciproquement, si $Sp(A) \subset [-1,1]$, alors $A = P\Delta P^{-1}$ avec $\Delta = Diag(\lambda_i)$. Alors $A^n = P\Delta^n P^{-1}$ et la plus grande valeur absolue des composantes de F_n est $\max |F_{n,i}| \leq \max |\lambda_i|^n \max |F_{0,i}| \leq \max |F_{0,i}|$. La suite (F_n) est donc bornée.
- 10. Comme A=(1-2r)I+rB, $Sp(A)=\{(1-2r)+r\lambda|\lambda\in Sp(B)\}$. Or (F_n) est bornée ssi $Sp(A)\subset [-1,1]$.

 $\forall q \in \mathbb{N}^*, Sp(A) \subset [-1,1] \text{ si et seulement } \text{si}\{(1-2r)+r\lambda | \lambda \in Sp(B)\} \subset [-1,1]$

si et seulement si $\forall q \in \mathbb{N}^*, (1-2r)+2r\cos(\pi/(q+1)) \subset [-1,1]$

si et seulement si $(1-2r) + 2r - 1, 1 \subset [-1, 1]$

si et seulement si $0 \le r \le 1/2$.