- 1. Soit f dans E. f est de classe C^1 sur I = [0, 1], donc |f'| est continue sur I, et donc ||f|| a bien un sens. De plus ||f|| est positive.
 - $\begin{tabular}{l} * \forall f,g \in E, \|f+g\| = |(f+g)(0)| + \int_0^1 |(f+g)'(t)| \ dt \leq |f(0)| + |g(0)| + \int_0^1 |f'(t)| + |g'(t)| \ dt = \|f\| + \|g\|. \\ * \forall f \in E, \forall \lambda \in \mathbb{R}, \|\lambda f\| = |\lambda f(0)| + \int_0^1 |(\lambda f)'(t)| \ dt = |\lambda| |f(0)| + |\lambda| \int_0^1 |f'(t)| \ dt = |\lambda| \|f\|. \\ \end{tabular}$

 - * $\forall f \in E, \|f\| \ge 0$
 - * $\forall f \in E$, $||f|| = 0 \Rightarrow |f(0)| = 0$ et $\int_0^1 |f'(t)| dt = 0$ car ces 2 nombres sont positifs et de somme nulle. Or |f'| est continue et positive et d'intégrale nulle, donc f'=0, i.e. f est constante. Or f(0)=0, donc f est nulle.
 - $\| \|$ est bien une norme sur E.
- **2.** (i.) N_1 et N_2 sont des normes équivalentes sur E si et seulement si

$$\exists a > 0, \exists b > 0 \text{ tq } \forall u \in E, \ aN_1(u) \le N_2(u) \le bN_1(u)$$

Attention: les constantes sont strictement positives.

(ii.)
$$\forall f \in E, ||f|| = |f(0)| + 2 \int |f'| \le 4 |f(0)| + 2 \int |f'| = 2 ||f||'$$

De même $||f||' = 2|f(0)| + \int |f'| \le 2|f(0)| + 4\int |f'| = 2||f||$ Et donc

$$\forall f \in E, \ \frac{1}{2} \|f\| \le \|f\|' \le 2 \|f\|.$$
 Les normes sont équivalentes.

3. Prenons la norme sur E définie par $||f||_1 = \int_0^1 |f(t)| dt$, et considérons la suite (f_n) de fonctions de E

définie par $\forall x \in \mathbb{R}, f_n(x) = x^n$. $\|f_n\|_1 = \int_0^1 t^n dt = \frac{1}{n+1}, \text{ qui converge vers } 0 \text{ et } \|f_n\| = 0 + 2 \int_0^1 f_n'(t) dt = 2(f_n(1) - f_n(0)) = 2$ Il n'existe donc pas de réel a > 0 tel que $\forall f \in E, \ a \|f\| \le \|f\|_1$, ces deux normes ne sont pas équivalentes.

CCP 2002 - PC - Maths 1

Partie 1

- 1. a. Une matrice est trigonalisable ssi elle est semblable à une matrice triangulaire (supérieure), c'est à dire il existe P inversible et T triangulaire telles que $M = PTP^{-1}$.
 - Attention aux nombreuses confusions entre matrices et endomorphisme : notamment, parler de bases ou de changement de bases n'a aucun sens pour des matrices.
 - **b.** $M \in M_{n+1}(\mathbb{C})$. Notons $P_M = \det(xI_{n+1} M)$ le polynôme caractéristique de M et $u \in L(\mathbb{C}^{n+1})$ de matrice M dans la base canonique . χ_M est de degré $n+1 \geq 1$, donc NON CONSTANT. D'après le théorème de d'Alembert-Gauss, χ_M admet au moins une racine sur C, donc M admet au moins une valeur propre λ

On peut parler de corps algébriquement clos, mais ne pas oublier de préciser que le polynôme est non constant!

 ${f c.}$ Soit alors V_1 un vecteur propre associé à λ . D'après le théorème de la base incomplète , il existe $V_2,...,V_{n+1}$ tels que $B'=(V_1,V_2,...,V_{n+1})$ soit une base de \mathbb{C}^{n+1} . Soit Q la matrice de passage de la base canonique à la base B' et $M' = mat_{B'}(u)$. On a : $u(V_1) = \lambda V_1$ donc $M' = mat_{B'}(u)$

$$\begin{pmatrix} \lambda & m'_{1,2} & \cdots & m'_{1,n+1} \\ 0 & m'_{2,2} & \cdots & m'_{2,n+1} \\ \vdots & \vdots & & \vdots \\ 0 & m'_{n+1,2} & \cdots & m'_{n+1,n+1} \end{pmatrix} \text{Notons } N = \begin{pmatrix} m'_{2,2} & \cdots & m'_{2,n+1} \\ \vdots & & \vdots \\ m'_{n+1,2} & \cdots & m'_{n+1,n+1} \end{pmatrix}, \ N \in M_n(\mathbf{C}) \text{ et } L = \begin{pmatrix} m'_{2,2} & \cdots & m'_{2,n+1} \\ \vdots & & \vdots \\ m'_{n+1,2} & \cdots & m'_{n+1,n+1} \end{pmatrix}, \ N \in M_n(\mathbf{C}) \text{ et } L = \begin{pmatrix} m'_{2,2} & \cdots & m'_{2,n+1} \\ \vdots & & \vdots \\ m'_{n+1,2} & \cdots & m'_{n+1,n+1} \end{pmatrix}$$

$$(m'_{1,2},...,m'_{1,n+1}), L \in M_{1,n}(\mathbf{C}): M' = Q^{-1}MQ = \begin{pmatrix} \lambda & L \\ 0_{n,1} & N \end{pmatrix}$$

d. D'après l'hypothèse faite au début de la question, N est trigonalisable, donc : $\exists H \in GL_n(\mathbf{C})$ tq $S = H^{-1}NH$ soit triangulaire supérieure . On a : $N = HSH^{-1}$ et $S \in T_n(\mathbf{C})$

e. On pose $R' = \begin{pmatrix} 1 & 0_{1,n} \\ 0_{n,1} & H^{-1} \end{pmatrix}$. Par produit matriciel par blocs, $R'R = I_{n+1}$, donc : $R \in GL_{n+1}(\mathbf{C})$ et $R^{-1} = R'$.

Si on devine la forme de R^{-1} , il est inutile de parler de déterminant...

- **f.** Soit $M'' = R^{-1}M'R$. Posons $P = QR : M'' = P^{-1}MP = \begin{pmatrix} \lambda & LH \\ 0_{n,1} & S \end{pmatrix}$; S est triangulaire supérieure donc M'' aussi . En conclusion : M est trigonalisable .
- 2. Si n=1: toute matrice $M \in M_1(\mathbf{C})$ est triangulaire, donc trigonalisable. D'après 1), si toute matrice $M \in M_n(\mathbf{C})$ est trigonalisable, alors toute matrice $M \in M_{n+1}(\mathbf{C})$ est trigonalisable. On peut conclure à l'aide du principe de récurrence que: toute matrice carrée complexe est trigonalisable
- 3. a. $\chi_G(x) = \det(xI_3 G) = (x 1)^3$; 1 est valeur propre d'ordre 3 et $G \neq I_3$ donc dim $[\ker(G I_3)] \neq 3$ donc G n'est pas diagonalisable .
 - **b.** $rg(G-I_3)=2$ donc dim $[\ker(G-I_3)]=1$, $u=e_1-e_3$ engendre $\ker(G-I_3)$ et tout autre vecteur propre est de la forme αu donc de première composante $\alpha \neq 1$. det $(u,e_2,e_3)=1$ donc $B'=(u,e_2,e_3)$ est une base de \mathbb{C}^3 .

$$\mathbf{c.} \ \ Q = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \text{ et } Q^{-1}GQ = \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & -4 & 3 \end{pmatrix}. \ L = (1,0) \text{ et } N = \begin{pmatrix} -1 & 1 \\ -4 & 3 \end{pmatrix}. \ 1 \text{ est valeur}$$

$$\text{propre double de } N \text{ et } \begin{pmatrix} 1 \\ 2 \end{pmatrix} \text{ est vecteur propre associé . Soit } H = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}; \ S = H^{-1}NH = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}; \ LH = (1,0); \ P = QR = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 2 & 1 \end{pmatrix}; \ P^{-1}GP = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Dommage de ne pas mener les calculs jusqu'au bout : toute la méthode est exposée en début de partie.

- 4. Deux matrices semblables ont le même polynôme caractéristique; les valeurs propres d'une matrice triangulaire sont les termes de la diagonale. Donc si $A \in M_n(\mathbf{C})$ est semblable à $T \in T_n(\mathbf{C})$, alors les termes diagonaux de T sont les valeurs propres de A
- 5. a. Par hypothèse : $j < i \Rightarrow s_{i,j} = t_{i,j} = 0$. Soit $U = ST = (u_{i,j}) : u_{i,j} = \sum_{k=1}^n s_{i,k} t_{k,j}$. Si i > j alors pour $k < i : s_{i,k} = 0$ et pour $k \ge i$, $k > j \Rightarrow t_{k,j} = 0$ donc $u_{i,j} = 0$.

 Donc $ST \in T_n(\mathbf{C})$. Enfin si i = j seul k = i donne un terme non nul : $u_{i,i} = s_{i,i} t_{i,i}$ Il faut détailler les calculs.
 - **b.** On prend $S=T:T^2\in T_n(\mathbf{C})$, de t. diagonaux $(t_{i,i})^2$. Par récurrence : si $T^p\in T_n(\mathbf{C})$, de t. diagonaux $(t_{i,i})^p$, on prend $S=T^p$ d'où $T^{p+1}\in T_n(\mathbf{C})$, de t. diagonaux $(t_{i,i})^{p+1}$.
- **6.** Soit $A \in M_n(\mathbf{C})$. D'après 2), $\exists T \in T_n(\mathbf{C})$, $\exists P \in GL_n(\mathbf{C})$ $tq \ T = P^{-1}AP$. D'après 4), les termes diagonaux $t_{1,1},...,t_{n,n}$ de T sont les valeurs propres $\lambda_1,...,\lambda_n$ de A. D'après 5), les termes diagonaux de T^k sont $(\lambda_1)^k,...,(\lambda_n)^k$; d'après 4) et $T^k = P^{-1}A^kP$, ce sont les valeurs propres de A^k . Donc $\rho(A^k) = \max\left\{\left|(\lambda_i)^k\right|, 1 \le i \le n\right\} = (\max\left\{|\lambda_i|, 1 \le i \le n\right\})^k$ Conclusion: $\rho(A^k) = [\rho(A)]^k$

7. $\forall A \in M_n(\mathbf{C})$, $\psi(A)$ existe et $\psi(A) \geq 0$; $\psi(A) = 0 \Leftrightarrow A = 0_n$; $\forall A \in M_n(\mathbf{C})$, $\forall \lambda \in \mathbf{C}$, $\psi(\lambda A) = |\lambda| \psi(A)$; $\forall A, B \in M_n(\mathbf{C})$, $\psi(A + B) \leq \psi(A) + \psi(B)$: $\underline{\psi}$ est une norme sur $M_n(\mathbf{C})$ Soit $U \in M_n(\mathbf{C})$ tq $\forall i, j$, $u_{i,j} = 1$: $\psi(U) = 1$, $U^2 = nU$ donc $\psi(U^2) = n$ et $\underline{\text{si } n \geq 2}$ l'inégalité: $\psi(U \times U) \leq \psi(U) \times \psi(U)$ n'est pas vérifiée, donc ψ n'est pas une norme matricielle

8. La norme N et une norme matricielle φ sont équivalentes car $M_n(\mathbf{C})$ est un EV de dim finie . Par définition : $\exists \alpha$, $\beta > 0$ $tq \ \forall A \in M_n(\mathbf{C})$, $\alpha \varphi(A) \leq N(A) \leq \beta \varphi(A)$

Attention, les constantes sont strictement positives!

Alors
$$\forall A, B \in M_n(\mathbf{C})$$
, $N(AB) \leq \beta \varphi(AB) \leq \beta \varphi(A) \varphi(B) \leq \frac{\beta}{\alpha^2} N(A) N(B)$

9. Soit $\forall k$, $B_k = P^{-1}A_kP$ et $B = P^{-1}AP$. $\forall k$, $B_k - B = P^{-1}(A_k - A)P$

Soit N une norme matricielle : $0 \le N(B_k - B) \le N(P^{-1})N(A_k - A)N(P)$ d'où : $N(A_k - A) \to 0$ $qd \ k \to 0$ $+\infty \Rightarrow N(B_k - B) \to 0 \ qd \ k \to +\infty$

Réciproque : si (B_k) CV vers B , alors (PB_kP^{-1}) CV vers PBP^{-1} d'où (A_k) CV vers A

- **10.** a. $\forall k \in \mathbb{N}^*$, $T^k = \begin{pmatrix} \lambda^k & k\lambda^{k-1}\mu \\ 0 & \lambda^k \end{pmatrix}$. A_k de terme général $a_{i,j}^{(k)}$ CV vers A si et seulement si $\forall i, j$, $a_{i,j}^{(k)} \to a_{i,j}^{(k)}$ $a_{i,j}$ qd $k \to +\infty$. Donc la suite (T^k) CV ssi les suites complexes (λ^k) et $(k\lambda^{k-1}\mu)$ CV; ssi $[|\lambda| < 1 \text{ (la limite est alors } 0_2)] \text{ ou } |\lambda = 1 \text{ et } \mu = 0 \text{ } (\forall k, T^k = I_2)|$
 - **b.** $\exists P \in GL_2(\mathbf{C}) \text{ tq } P^{-1}AP = D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$. Alors $D^k = \begin{pmatrix} (\lambda_1)^k & 0 \\ 0 & (\lambda_2)^k \end{pmatrix}$. D'après 9) (A^k) CV ssi (D^k) CV . Les cas de CV sont : $\begin{cases} |\lambda_i| < 1 \text{ pour } i = 1 \text{ et } 2 \text{ (limite } 0_2) \\ \lambda_i = 1 \text{ et } |\lambda_j| < 1 \text{ pour } i \neq j \\ \lambda_1 = \lambda_2 = 1 \end{cases}$
 - c. Si A n'est pas diagonalisable , nécéssairement ses valeurs propres sont égales . D'après 2) elle est trigonalisable : $\exists P \in GL_2(\mathbf{C})$ tq $P^{-1}AP = T = \begin{pmatrix} \lambda & \mu \\ 0 & \lambda \end{pmatrix}$ et $\mu \neq 0$ (sinon A serait diagonalisable) . Donc d'après a), la suite (T^k) CV ssi $|\lambda| < 1$ et d'après 9), (A^k) CV ssi (T^k) CV . Ici $\rho(A) = |\lambda|$. Donc (A^k) CV ssi $\rho(A) < 1$ et la limite est 0_2
 - **d.** D'après b), si A est diagonalisable : (A^k) CV vers 0_2 ssi $(|\lambda_1| < 1$ et $|\lambda_1| < 1)$, ssi $\rho(A) < 1$. En conclusion de b) et c) : $|(A^k)$ CV vers 0_2 ssi $\rho(A) < 1$

Partie 2

- 1) a) Posons $Y = AX : \forall i, y_i = \sum_{j=1}^n a_{i,j} x_j : \forall j, |x_j| \le N_{\infty}(X) \Rightarrow |y_i| \le \left(\sum_{j=1}^n |a_{i,j}|\right) N_{\infty}(X) \le M_A N_{\infty}(X)$ donc $N_{\infty}(AX) \leq M_A N_{\infty}(X)$
- b) \mathbb{C}^n est un EV de dim finie donc toute norme N sur \mathbb{C}^n est équivalente à la norme $N_\infty: \exists \alpha, \beta > 0 \ tq \ \forall X \in \mathbb{C}^n$ \mathbf{C}^n , $\alpha N_{\infty}(X) \leq N(X) \leq \beta N_{\infty}(X)$
- $N(AX) \leq \beta N_{\infty}(AX) \leq \beta M_A N_{\infty}(X) \leq \beta M_A \frac{1}{\alpha} N(X) \leq C_A N(X)$ en posant $C_A = \frac{\beta}{\alpha} M_A$
- c) $\forall X \neq 0$, $\frac{N(AX)}{N(X)} \leq C_A$. L'ensemble $\left\{\frac{N(AX)}{N(X)}, X \in \mathbf{C}^n \{0\}\right\}$ est une partie non vide et majorée de \mathbf{R} donc admet une borne supérieure.
- d) Cette borne sup est le plus petit majorant et C_A est un majorant donc $N(A) \leq C_A$. Dans le cas de la norme N_{∞} , on peut prendre $C_A = M_A$ donc : $|\widetilde{N}_{\infty}(A) \leq M_A|$

e)
$$X_0 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \Rightarrow GX_0 = \begin{pmatrix} 0 \\ 3 \\ 10 \end{pmatrix}$$
. On a : $N_{\infty}(X_0) = 1$, $N_{\infty}(GX_0) = 10$ d'où $\frac{N_{\infty}(GX_0)}{N_{\infty}(X_0)} = 10 \Rightarrow \widetilde{N}_{\infty}(G) \geq 10$

10. De plus $M_G=10$ donc $\widetilde{N}_{\infty}(G)\leq 10$. Conclusion: $\widetilde{N}_{\infty}(G)=M_G=10$

2)
$$\forall j, |y_j| = 1 \Rightarrow N_{\infty}(Y) = 1$$
. Soit $Z = AY$. $\forall i, |z_i| = \left| \sum_{j=1}^n a_{i,j} y_j \right| \le \sum_{j=1}^n |a_{i,j}| \le M_A$

Si
$$a_{i_0j} = 0$$
 alors $a_{i_0,j}y_j = 0 = |a_{i_0,j}|$, sinon $a_{i_0,j}y_j = |a_{i_0,j}|$ car $\forall u \in \mathbf{C}^*$, $u\frac{\overline{u}}{|u|} = |u|$. Donc $z_{i_0} = \sum_{j=1}^n |a_{i_0,j}| = \sum_{j=1}^n |a_{i_0,j}|$

$$M_A$$
 . $N_{\infty}(Z) = M_A \Rightarrow \frac{N_{\infty}(AY)}{N_{\infty}(Y)} = M_A \Rightarrow \widetilde{N}_{\infty}(A) \geq M_A$. En utilisant 1)d) on peut conclure : $\widetilde{N}_{\infty}(A) = M_A$

3) a)
$$\widetilde{N}(A) = 0 \Leftrightarrow \forall X \neq 0$$
, $N(AX) = 0 \Leftrightarrow \forall X \neq 0$, $AX = 0 \Leftrightarrow \forall X$, $AX = 0 \Leftrightarrow A = 0_n$
b) $\forall X \neq 0$, $\frac{N(\lambda AX)}{N(X)} = \frac{|\lambda|N(AX)}{N(X)} \leq |\lambda| \widetilde{N}(A)$ donc $\widetilde{N}(\lambda A) \leq |\lambda| \widetilde{N}(A)$

b)
$$\forall X \neq 0$$
, $\frac{N(\lambda AX)}{N(X)} = \frac{|\lambda|N(AX)}{N(X)} \leq |\lambda| \widetilde{N}(A)$ donc $\widetilde{N}(\lambda A) \leq |\lambda| \widetilde{N}(A)$

c) Si
$$\lambda \neq 0$$
: $\widetilde{N}(A) = \widetilde{N}(\frac{1}{\lambda}\lambda A) \leq \left|\frac{1}{\lambda}\right| \widetilde{N}(\lambda A) \Rightarrow |\lambda| \widetilde{N}(A) \leq \widetilde{N}(\lambda A)$ d'où $|\lambda| \widetilde{N}(A) = \widetilde{N}(\lambda A)$

Si $\lambda = 0$ on a égalité car les 2 membres sont nuls .

d) $\forall X \neq 0$, $N[(A+B)X] = N(AX+BX) \leq N(AX) + N(BX) \Rightarrow \frac{N[(A+B)X]}{N(X)} \leq \frac{N(AX)}{N(X)} + \frac{N(BX)}{N(X)} \leq \widetilde{N}(A) + \widetilde{N}(B)$ donc $\widetilde{N}(A+B) \leq \widetilde{N}(A) + \widetilde{N}(B)$

e) $\forall X \neq 0$, $\frac{N(AX)}{N(X)} \leq \widetilde{N}(A) \Rightarrow N(AX) \leq \widetilde{N}(A)N(X)$ et si X=0 les 2 membres sont nuls .

f) On déduit de a),c),d) que \widetilde{N} est une norme sur $M_n(\mathbf{C})$. De plus : $\forall A, B \in M_n(\mathbf{C})$, $\forall X \in \mathbf{C}^n$, $N(ABX) \leq \widetilde{N}(A)N(BX) \leq \widetilde{N}(A)\widetilde{N}(B)N(X)$ d'où : $\widetilde{N}(AB) \leq \widetilde{N}(A)\widetilde{N}(B)$

Conclusion : $|\widetilde{N}|$ est une norme matricielle sur $M_n(\mathbf{C})$ (ce qui en prouve l'existence)

4)a) Soit $\lambda \in Sp(A)$ et X un vecteur propre associé : $X \neq 0$ et $AX = \lambda X \Rightarrow \frac{N(AX)}{N(X)} = |\lambda|$ donc $|\lambda| \leq \widetilde{N}(A)$.

En particulier pour λ telle que $|\lambda| = \rho(A)$. Donc $\rho(A) \leq \widetilde{N}(A)$

b) Si $A = I_n : \rho(A) = 1$ et $\forall X$, AX = X donc $\widetilde{N}(A) = 1$: on a égalité.

c) Si $A \neq 0_n$ alors $\widetilde{N}(A) \neq 0$ d'après 3)a) . Si de plus A est nilpotente , sa seule valeur propre est 0 donc $\rho(A) = 0$ et : $\rho(A) < \widetilde{N}(A)$

5) Si (A^k) converge vers 0_n alors $\widetilde{N}(A^k) \to 0$ qd $k \to +\infty$. $[\rho(A)]^k = \rho(A^k) \le \widetilde{N}(A^k)$ donc $[\rho(A)]^k \to 0$ qd $k \to +\infty$. D'où : $[\rho(A) < 1]$. (Réciproque admise)

6) a) De l'inégalité vue en 5) on déduit pour $k \in \mathbf{N}^*$: $\rho(A) \leq \left\lceil \widetilde{N}(A^k) \right\rceil^{\frac{1}{k}}$

b) $\lambda \in Sp(A) \Leftrightarrow \alpha\lambda \in Sp(\alpha A)$ donc $\rho(\alpha A) = |\alpha| \rho(A)$

c) On prend $\alpha = \frac{1}{\rho(A) + \varepsilon}$ $(\alpha > 0)$ et on applique a) : $\rho(A_{\varepsilon}) = \alpha \rho(A) = \frac{\rho(A)}{\rho(A) + \varepsilon} < 1$ car $\varepsilon > 0$

D'après le résultat admis de 5), $(A_{\varepsilon})^k$ CV vers 0 donc $\exists k_{\varepsilon}$ tq $\forall k \geq k_{\varepsilon}$, $\widetilde{N}\left((A_{\varepsilon})^k\right) \leq 1$. $(A_{\varepsilon})^k = \alpha^k A^k \Rightarrow \widetilde{N}\left((A_{\varepsilon})^k\right) = \alpha^k \widetilde{N}(A^k)$ Donc $\alpha^k \widetilde{N}(A^k) \leq 1 \Rightarrow \widetilde{N}(A^k) \leq (\rho(A) + \varepsilon)^k$.

d)
$$\forall k \geq k_{\varepsilon}$$
, $\rho(A) \leq \left[\widetilde{N}(A^k)\right]^{\frac{1}{k}} \leq \rho(A) + \varepsilon$: c'est la définition de : $\lim_{k \to +\infty} \left[\widetilde{N}(A^k)\right]^{\frac{1}{k}} = \rho(A)$