CCP2015 - PSI Un corrigé

1 Quelques exemples d'étude d'un système différentiel

- **I.1.** Le théorème indique que l'ensemble des solutions de (E) sur I est un \mathbb{C} -espace vectoriel de dimension n.
- **I.2.** Posons $X: t \mapsto \alpha(t)V$ et raisonnons par conditions nécessaires puis suffisantes.
 - Si X est solution de (E) alors, en considérant une coordoonnée non nulle de V (qui existe car $V \neq 0$ comme vecteur propre), disons V_i , on a $\alpha(t) = \frac{X_i(t)}{V_i}$ et α est donc dérivable. De plus, $X'(t) = \alpha'(t)V$ et $A(t)X(t) = \lambda(t)\alpha(t)X(t)$ et donc

$$\forall t \in I, \ \alpha'(t) = \lambda(t)\alpha(t) \tag{1}$$

- Réciproquement, si α est solution de (1) alors X est dérivable et le même calcul montre que c'est une solution de (E).

D'après le théorème fondamental si $t_0 \in I$, la fonction $t \mapsto \int_{t_0}^t \lambda(u) du$ est une primitive sur l'intervalle I de la fonction continue λ . Et d'après le cours, l'ensemble des solutions de (1) sur I est

$$\operatorname{Vect}\left(t\mapsto e^{\int_{t_0}^t \lambda(u)\ du}\right)$$

I.3. On remarque que $A(t) \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, ce qui donne un premier vecteur propre pour A. Comme la trace de A(t) vaut a+1-b, SI il y a une second valeur propre, c'est a-b. En cherchant un élément du noyau de $A-(a-b)I_2$, on est amenés à trouver que (a-1,b) est vecteur propre associé à la valeur propre a-b. Comme $\begin{vmatrix} 1 & a-1 \\ 1 & b \end{vmatrix} = b-a+1 \neq 0$ par hypothèse, nos deux vecteurs propres sont indépendants. La quetion précédente indique (on choisit $t_0=0$ et l'intégrale se calcule immédiatement puisque $\lambda(t)$ est une constante) que

$$X : t \mapsto e^t \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 et $Y : t \mapsto e^{(a-b)t} \begin{pmatrix} a-1 \\ b \end{pmatrix}$

sont deux solutions de (E). L'indépendance des vecteurs propres donne l'indépendance des fonctions et, par dimension (X,Y) est une base de l'espace des solutions de (E) sur \mathbb{R} .

I.4.1 Dans le cas $\mu = 1$, (1,1) et (1,-1) sont vecteurs propres de A(t) associés aux valeurs propres a(t) + b(t) et a(t) - b(t). Ces deux vecteurs propres sont indépendants. En choisissant $t_0 \in I$ et en utilisant **I.2** on obtient deux solutions de (E) qui sont indépendantes car les vecteurs propres le sont. Par dimension, l'ensemble des solutions de (E) sur I est

$$\operatorname{Vect}\left(t\mapsto e^{\int_{t_0}^t (a(u)+b(u))\ du}\left(\begin{array}{c}1\\1\end{array}\right),t\mapsto e^{\int_{t_0}^t (a(u)-b(u))\ du}\left(\begin{array}{c}1\\-1\end{array}\right)\right)$$

I.4.2 Le polynôme caractéristique de A(t) est

$$\chi_t(\lambda) = \lambda^2 - (2a(t) + (\mu - 1)b(t))\lambda - (a(t)^2 + (\mu - 1)a(t)b(t) - \mu b(t)^2)$$

Le discriminant de χ_t vaut (après calcul simple)

$$\Delta_t = (\mu + 1)^2 b(t)^2$$

- Si $\mu \neq -1$ alors χ_t admet deux racines distinctes. A(t) admet donc deux valeurs propres distinctes

$$\lambda_1(t) = \frac{2a(t) + (\mu - 1)b(t) - (\mu + 1)b(t)}{2} = a(t) - b(t)$$

$$\lambda_2(t) = \frac{2a(t) + (\mu - 1)b(t) + (\mu + 1)b(t)}{2} = a(t) + \mu b(t)$$

Connaissant les valeurs propres, il est facile de deviner des vecteurs propres. $V_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

est vecteur propre associé à $a(t) + \mu$ et $V_1 = \begin{pmatrix} \mu \\ -1 \end{pmatrix}$ est vecteur propre associé à a(t) - b(t). V_1 et V_2 sont constants et λ_1, λ_2 sont des fonctions continues.

- Si $\mu = -1$ alors $\chi_t = (\lambda a + b)^2$. A(t) possède une unique valeur propre. On vérifie que V_2 est toujours vecteur propre associé à la valeur propre a(t) - b(t). On ne peut trouver un second vecteur propre indépendant. On pourrait bien sûr conclure en $V_1 = 2V_2$ et $\lambda 1 = \lambda_2$ mais ceci ne semble pas trop dans l'esprit du problème. On peut penser qu'il y a un bug ou un autre (mais lequel?) dans l'énoncé.
- **I.4.3** Si $\forall t \in I$, $\lambda_1(t) \neq \lambda_2(t)$ alors, en prenant un t particulier (qui existe car I n'est pas vide) et comme $b(t) \neq 0$, on a $\mu \neq -1$. Réciproquement, comme b ne s'annule pas, $\lambda_1(t)$ est toujours différent de $\lambda_2(t)$ quand $\lambda \neq -1$. La condition nécessaire et suffisante cherchée est donc

$$\mu \neq -1$$

I.4.4 Dans le cas $\mu \neq -1$, le calcul fait en **I.4.2** et **I.2** donnent deux solutions indépendantes de (E). Par dimension $((V_1, V_2)$ est libre) on obtient une base formée de

$$t \mapsto e^{\int_{t_0}^t (a(u) - b(u)) du} \begin{pmatrix} \mu \\ -1 \end{pmatrix}$$
 et $t \mapsto e^{\int_{t_0}^t (a(u) + \mu b(u)) du} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

2 Développement en série entière des solutions pour A constante

- II.1.1 On a cinq propriétés à vérifier.
 - Soit $A \in \mathcal{M}_n(\mathbb{C})$ et $X \neq 0$. On a

$$\frac{\|AX\|}{\|X\|} = \left\|A\frac{X}{\|X\|}\right\|$$

 $Y\mapsto AY$ est linéaire en dimension et donc continue. Elle est donc bornée sur la sphère unité par une constante M. On a alors $\frac{\|AX\|}{\|X\|} \leq M$ et la borne supérieure N(A) existe. De façon immédiate, $\forall A,\ N(A) \geq 0$ (borne supérieure de quantités positives). On a ainsi

- la positivité de N.
- Si N(A) = 0 alors $\forall X \neq 0$, ||AX|| = 0 (une borne supérieure de quantité positives n'est nulle que si toutes les quantités sont nulles). Ceci reste vrai si X=0 et A=0 (l'endomorphisme canoniquement associé à A l'est). On a ainsi N qui vérifie l'axiome de séparation.
- Soient $A, B \in \mathcal{M}_n(\mathbb{C})$.

$$\forall X \neq 0, \ \frac{\|(A+B)X\|}{\|X\|} \leq \frac{\|AX\| + \|BX\|}{\|X\|} = \frac{\|AX\|}{\|X\|} + \frac{\|BX\|}{\|X\|} \leq N(A) + N(B)$$

En passant à la borne supérieure, il vient $N(A+B) \leq N(A) + N(B)$, c'est à dire l'inégalité triangulaire.

Soient $A \in \mathcal{M}_n(\mathbb{C})$ et $\lambda \in \mathbb{C}$. On a

$$\forall X \neq 0, \ \frac{\|(\lambda A)X\|}{\|X\|} = |\lambda| \frac{\|AX\|}{\|X\|} \le |\lambda| N(A)$$

En passant à la borne supérieure, on trouve que $N(\lambda A) \leq |\lambda| N(A)$. Si $\lambda = 0$, l'égalité est immédiate. Sinon, on a aussi $N(A) = N(\frac{1}{\lambda}\lambda A) \leq \frac{1}{|\lambda|}N(\lambda A)$ ce qui

permet d'obtenir l'inégalité réciproque. On a donc l'homogénéité.

II.1.2 Soient $A, B \in \mathcal{M}_n(\mathbb{C})$.

$$\forall X \notin \ker(B), \ \frac{\|ABX\|}{\|X\|} = \frac{\|ABX\|}{\|BX\|} \frac{\|BX\|}{\|X\|} \le N(A)N(B)$$

et ceci reste trivialement vrai si $X \in \ker(B) \setminus \{0\}$. Par passage à la borne supérieure, on a donc

$$N(AB) \le N(A)N(B)$$

- **II.2.1** On prouve le résultat annoncé par récurrence sur k.
 - <u>Initialisation</u>: le résultat est vrai pour k = 0 avec les conventions choisies.
 - <u>Hérédité</u>: supposons le résultat vrai à un rang $k \geq 0$. X' = AX et multiplier par A (qui est constante) ne change pas la régularité (théorèmes d'opérations). Donc $X' \in C^k$ ou encore $X \in C^{k+1}$. Et en dérivant (linéarité de la dérivation, rappelons encore que A est constante)

$$X^{k+1} = AX^{(k)}(t) = A(A^kX(t)) = A^{k+1}X(t)$$

ce qui prouve le résultat au rang k + 1.

II.2.2 D'après la formule de Taylor-intégrale appliquée à X (de classe C^{∞}) à l'ordre p entre 0 et t:

$$X(t) = \sum_{k=0}^{p} \frac{t^k}{k!} X^{(k)}(0) + \int_0^t \frac{(t-u)^p}{p!} X^{(p+1)}(u) \ du$$

Remarque : cette formule vectorielle est la conséquence directe de la formule scalaire si on se reporte aux coordonnées.

La question précédente donnant $X^{(k)}(0) = A^k X(0) = A^k X_0$ et $X^{(p+1)}(u) = A^{k+1} X(u)$, on a ainsi

$$X(t) = \left(\sum_{k=0}^{p} \frac{t^k}{k!} A^k\right) X_0 + \int_0^t \frac{(t-u)^p}{p!} A^{p+1} X(u) \ du$$

II.2.3 Il s'agit de montrer qu'à t fixé, la norme du terme intégral de la formule précédente est de limite nulle. Or, (il faut prendre garde au sens des bornes et donc au signe de t)

$$\left\| \int_0^t \frac{(t-u)^p}{p!} A^{p+1} X(u) \ du \right\| \leq \int_{[0,t]} \left\| \frac{(t-u)^p}{p!} A^{p+1} X(u) \right\| \ du = \int_{[0,t]} \frac{|t-u|^p}{p!} \left\| A^{p+1} X(u) \right\| \ du$$

Par définition de N, on a $||MX|| \le N(M)||X||$ pour tout $X \ne 0$ (et $M \in \mathcal{M}_n(\mathbb{C})$). Ainsi

$$||A^{p+1}X(u)|| \le N(A^{p+1})||X(u)|| \le N(A^{p+1})M_t \text{ avec } M_t = \sup_{u \in [0,t]} ||X(u)||$$

 M_t existant puisqu'une fonction continue est bornée sur un segment.

Mais II.1.2 et une récurrence simple donne $N(A^{p+1}) \leq N(A)^{p+1}$ en sorte que

$$\left\| \int_0^t \frac{(t-u)^p}{p!} A^{p+1} X(u) \ du \right\| \le \frac{N(A)^{p+1} M_t}{p!} \int_{[0,t]} |t-u|^p \ du$$

Le calcul de l'intégrale est simple (distinguer les cas $t \ge 0$ et $t \le 0$ permet de se débarasser des module) et donne

$$\int_{[0,t]} |t - u|^p \ du = \frac{|t|^{p+1}}{p+1}$$

On a finalement

$$\left\| \int_0^t \frac{(t-u)^p}{p!} A^{p+1} X(u) \ du \right\| \le \frac{(tN(A))^{p+1} M_t}{(p+1)!}$$

Le majorant est de limite nulle par croissances comparées (exponentielle et factorielle). On a donc

$$X(t) = \lim_{p \to +\infty} \left(\sum_{k=0}^{p} \frac{t^k}{k!} A^k \right) X_0$$

Chaque coordonnée de $\left(\sum_{k=0}^{p} \frac{t^k}{k!} A^k\right) X_0$ pouvant s'écrire sous la forme $\sum_{k=0}^{p} \alpha^k t^k$ (α_k ne dépendant que de k et de rien d'autre, en particulier pas de p ou de t), chaque X_i est donc somme sur \mathbb{R} d'une série entière.

II.3.1 On peut utiliser un calcul par bloc (déterminant bloc-diagonal) pour obtenir

$$P_A(X) = (X-1)^2(X^2-X) = X(X-1)^3$$

II.3.2 $(1, X, X(X-1), X(X-1)^2)$ est libre puisqu'échelonnée en degré. Elle est composée de 4 éléments de $\mathbb{C}_3[X]$ qui est de dimension 4 et c'est donc une base de $\mathbb{C}_3[X]$. Le reste dans la division euclidienne de X^k par P_A étant de degré ≤ 3 , il existe un polynôme Q_k et des complexes a_k, b_k, c_k, d_k tels que

$$X^{k} = P_{A}(X)Q_{k}(X) + a_{k} + b_{k}X + c_{k}X(X - 1) + d_{k}X(X - 1)^{2}$$
(2)

En prenant la valeur en X=0 (et comme k>0) on trouve $a_k=0$. La valeur en X=1 donne $b_k=1$. En dérivant et en faisant X=1, on en déduit alors que $c_k=k-1$. En dérivant deux fois et en faisant X=1, on en enfin que $2d_k=k(k-1)-2(k-1)=(k-1)(k-2)$. Le reste cherché est donc

$$X + (k-1)X(X-1) + \frac{1}{2}(k-1)(k-2)X(X-1)^2$$

II.3.3 Comme $P \mapsto P(A)$ est compatible avec les loi (morphisme d'anneau) et comme P_A annule A (Cayley-Hamilton), la relation (2) "appliquée en A" donne

$$A^{k} = A + (k-1)A(A - I_4) + \frac{1}{2}(k-1)(k-2)A(A - I_4)^{2}$$

II.3.4 Un calcul immédiat donne

$$A(A - I_4) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = E_{2,3} \text{ et } A(A - I_4)^2 = 0$$

II.3.5 On a, pour tout t réel,

$$\sum_{n=1}^{p} \frac{t^n}{n!} (n-1) = \sum_{n=1}^{p} \frac{t^n}{(n-1)!} - \sum_{n=1}^{p} \frac{t^n}{n!} = t \sum_{n=0}^{p-1} \frac{t^n}{n!} - \sum_{n=1}^{p} \frac{t^n}{n!}$$

Chaque terme admet une limite et on a

$$\sum_{n=1}^{\infty} \frac{t^n}{n!} (n-1) = te^t - e^t + 1$$

qui est somme de série entière de rayon infini.

II.3.6 Pour $k \ge 1$, on a $A^k = A + (k-1)E_{2,3}$. On en déduit que (chaque terme existe bien)

$$\sum_{k=1}^{\infty} \frac{t^k}{k!} A^k = \sum_{k=1}^{\infty} \frac{t^k}{k!} A + \sum_{k=1}^{\infty} \frac{t^k (k-1)}{k!} E_{2,3}$$

En ajoutant le terme pour k = 0, on obtient

$$M(t) = \sum_{k=0}^{\infty} \frac{t^k}{k!} A^k = I_4 + (e^t - 1)A + (te^t - e^t + 1)E_{2,3} = \begin{pmatrix} e^t & 0 & -e^t + 1 & e^t - 1 \\ 0 & e^t & te^t & 0 \\ 0 & 0 & e^t & 0 \\ 0 & 0 & e^t - 1 & 1 \end{pmatrix}$$

Il suffit alors d'appliquer la question ${\bf II.2.3}$ pour en déduire que la solution cherchée est

$$X : t \mapsto M(t)X_0 = \begin{pmatrix} 1 \\ te^t \\ e^t \\ e^t - 1 \end{pmatrix}$$